

PROFIBUS User Manual

PROFIBUS Application Program Interface

User Interface

Version 5.4
Rev. 07

Date: 14-October-2011

Softing Industrial Automation GmbH
Richard-Reitzner-Allee 6

D-85540 Haar
Phone (++49) 89 - 4 56 56-0

 Fax (++49) 89 - 4 56 56-399

 Copyright by Softing Industrial Automation GmbH 2000-2011
All rights reserved.

PROFIBUS Application Program Interface

Copyright Notice

All rights are reserved. No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed using electronic
systems in any form whatsoever without prior written permission of Softing Industrial
Automation GmbH.

The producer reserves the right to make changes to the scope of supply as well as changes to
technical data, even without prior notice.

A great deal of attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed for potential errors
that might exist or for their effects. Should you find errors please inform your distributor of the
nature of the errors and the circumstances under which they occur. We will be responsive to
all reasonable ideas and will follow up on them, taking measures to improve the product if
necessary.

We call your attention to the fact that the company name and trademark as well as product
names are, as a rule, protected by trademark, patent and product brand laws.

Copyright 1995-2011 by Softing Industrial Automation GmbH, Haar

User Interface

User Manual Page: I

CONTENTS

1 SCOPE.. 1

2 OVERVIEW ... 2

3 USER INTERFACE USING WINDOWS 2000 AND HIGHER... 3
3.1 LOGICAL DEVICES.. 4

3.1.1 Directory structure of logical devices .. 4
3.1.2 Devices .. 5

3.1.2.1 Board device ... 5
3.1.2.2 General service device.. 5
3.1.2.3 General DP-Master data device... 6
3.1.2.4 General DP-Slave input data device.. 6
3.1.2.5 General DP-Slave output data device.. 6

3.1.3 Access rights.. 6
3.2 PROGRAM INTERFACES .. 7
3.3 PROFIBUS WINDOWS SYSTEM INTERFACE .. 9

3.3.1 Data structures ..10
3.3.1 CreateFile ...11
3.3.2 CloseHandle..14
3.3.3 GetLastError..16
3.3.4 DeviceIoControl...18
3.3.5 ReadFile..22
3.3.6 ReadFileEx ...25
3.3.7 WriteFile ...27
3.3.8 WriteFileEx ...30
3.3.9 GetOverlappedResult ..32
3.3.10 SetFilePointer..34
3.3.11 FileIOCompletionRoutine ..36

3.4 PROFIBUS APPLICATION PROGRAM INTERFACE (C-Interface)...38
3.4.1 Data structures ..39
3.4.2 Initialization and Shut down...39

3.4.2.1 Papi-Init ..40
3.4.2.2 Papi-End ..41

3.4.3 Send / Receive Interface ...42
3.4.3.1 Papi-Snd-Req-Res..42
3.4.3.2 Papi-Rcv-Con-Ind...44

3.4.4 Data Interface..46
3.4.4.1 Papi-Set-Data..46
3.4.4.2 Papi-Get-Data ...48
3.4.4.3 Papi-Set-Dps-Input-Data...50
3.4.4.4 Papi-Get-Dps-Input-Data ..52
3.4.4.5 Papi-Get-Dps-Output-Data..54

3.4.5 Additional Interface Functions ...56
4.4.5.1 Papi-Get-Versions ..56
3.4.5.2 Papi-Get-Serial-Device-Number ...57
4.4.5.3 Papi-Get-Last-Error ..58

3.4.5 INTERFACE RETURN VALUES ...59

PROFIBUS Application Program Interface

Page: II PROFIBUS

3.5 PROFIBUS APPLICATION PROGRAM INTERFACE (.NET-Interface)61
3.5.1 Data structures..62
3.5.2 Initialization and Shut down...63

3.5.2.1 CPAPI-Init ..63
3.5.2.2 CPAPI-End...65

3.5.3 Send / Receive Interface...66
3.5.3.1 CPAPI-SendServiceRequestResponse...66
3.5.3.2 CPAPI-ReceiveServiceConfirmationIndication ...68

3.5.4 Data Interface ...70
3.5.4.1 CPAPI-SetData ...70
3.5.4.2 CPAPI-GetData...72
3.5.4.3 CPAPI-SetDpsInputData...74
3.5.4.4 CPAPI-GetDpsInputData ..76
3.5.4.5 CPAPI-GetDpsOutputData ...78

3.5.5 Additional Interface Functions ...80
3.5.5.1 CPAPI-GetVersions..80
3.5.5.2 CPAPI-GetSerialDeviceNumber ...82
3.5.5.3 CPAPI-ImportBinaryDpConfigurationFile ..83

3.5.6 CPAPI User Interface Exception Values..84

User Interface

User Manual Page: 1

1 SCOPE

This manual describes the common access functions to all components of Softing's PROFIBUS protocol
software .

PROFIBUS API

FMB
LLI

remote
FM7local

FM7

FDLIF

FDL

FMS

FAL

FM2

DP /
DP/V1

Depending on the component of the PROFIBUS protocol to be used, this document should be read in
conjunction with one or more of the following parts of the PROFIBUS User Manual:

• "Basic Management"

• "FMS Services"

• "FM7 Services"

• "DP Services"

• "DP/V1 Services"

• "DP-Slave Services"

• "FDL Services"

PROFIBUS Application Program Interface

Page: 2 PROFIBUS

2 OVERVIEW

The services the PROFIBUS protocol (FMS, FM7 and DP / DP/V1) offers to the user are described in detail
in IEC 61158-5 AND IEC 61158-6 .

Those references describe the functions and parameters of the management and communication services,
but do not provide instructions or structures for the programmer on the nuts and bolts of how to write an
interface. This leaves room for implementations which can be adapted to optimally fit their respective
system environment on the positive side, but which can also reduce the "openness" of the application layer
interfaces.

User Interface

User Manual Page: 3

3 USER INTERFACE USING WINDOWS 2000 AND HIGHER

The PROFIBUS driver for Windows 2000 and higher offers access to the functionality of the PROFIBUS
protocol stack which runs on the PC boards PROFIboard-PCI, PROFIcard 2, PROFIusb, PROFI104, PBpro-
PCI, PBpro-cPCI, PBpro-PCIe, PBpro-PC104+ and on the PROFIBUS-Ethernet gateways PBpro ETH and
FG-x00-PB.

The software consists of the following parts:

Ä A kernel device driver, the PROFIBUS hardware driver, which provides access to the plugged

PROFIBUS interfaces and remote access via Ethernet to PBpro ETH / FG-x00-PB.

Ä An interface library (PAPI - PROFIBUS Application Program Interface) which provides access to the
complete functionality of the PROFIBUS hardware driver, and, in addition, offers a compatibility
mode interface to simplify porting of existing PROFIBUS applications to Windows.

Ä An .NET interface library (PAPI - PROFIBUS Application Program Interface) which also provides

access to the complete functionality of the PROFIBUS hardware driver.

Application

NT Systemservice interface

PAPI

PROFIBUS hardware driver

PROFIBUS Application Program Interface

Page: 4 PROFIBUS

3.1 LOGICAL DEVICES

The PROFIBUS hardware device driver creates the logical devices during system startup.

The logical devices are accessed by the I/O functions of Windows (32Bit / 64Bit). Each logical device must
be opened before it can be used. The devices are accessed by read, write, and control functions. After using
a device, it should always be closed.

All read requests can be executed only if the device is open for read access. All write requests can be
executed only if the device is open for write access. The access rights needed for control functions depend
on the specific control function code.

3.1.1 Directory structure of logical devices

To access a logical device, a unique Windows device name (Symbolic Link Name) is required. Optionally a
Windows alias device name can be defined via the PROFIBUS control panel. The device names are
created by the kernel device drivers.

Note: The Windows subsystem requires that all device names begin with the characters "\\.\".

The logical devices are structured hierarchically similar to a directory structure:

Example to access the general service device of board 0:
- Access via Windows device name: \\.\PROFIBUS\Board0\Pb0\Service
- Access via Windows alias device name: \\.\PROFIBUS\Node0\Service

NOTES:

In C programs, each backslash must be typed as "\\". Consequently, this device name in a C
program is "\\\\.\\PROFIBUS\\Board0\\Pb0\\Service " or "\\\\.\\PROFIBUS\\Node0\\Service".

The device names of all devices described below use these variable:

Y is the board number

User Interface

User Manual Page: 5

3.1.2 Devices

3.1.2.1 Board device

Windows Name: \\.\PROFIBUS\BoardY\Board
Windows Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\Board

Function: Services concerning the complete board

Read: Read the version information of the PROFIBUS protocol firmware
Ioctl: IOCTL_PROFI_GET_DATA_IMAGE

 Get a data image from the board

3.1.2.2 General service device

Windows Name: \\.\PROFIBUS\BoardY\Pb0\Service
Windows Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\Service

Function: Read and write any PROFIBUS frame

Read: Read any received frame
Write: Write any frame
Ioctl: IOCTL_PROFI_SET_TIMEOUT

 IOCTL_PROFI_GET_TIMEOUT
 Set or read the time-outs for read/write operations to/from this device.
 'Set' requires read access to the device.

 'Get' can be done with any access to the device
 The default time-out values of the General Service Device are 0 ms for read and

write.

If writing of a frame fails with one of these error codes (E_IF_NO_PARALLEL_SERVICES,
E_IF_RESOURCE_UNAVAILABLE, E_IF_SERVICE_CONSTR_CONFLICT), the hardware driver retries to
write the frame until either the write succeeds or the write time-out elapsed.

NOTE:

The FMB_EXCEPTION indication will be generated by the firmware if a fatal error has been detected.
The PROFIBUS hardware will be reinitialized.

If a FMB_RESET or FMB_EXIT confirmation has been received, the PROFIBUS hardware will be
reinitialized.

PROFIBUS Application Program Interface

Page: 6 PROFIBUS

3.1.2.3 General DP-Master data device

Windows Name: \\.\PROFIBUS\BoardY\Pb0\DpData
Windows Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\DpData

Function: Read and write of any DP data

Read: Read any DP data, not restricted to a slave
Write: Write any DP data, not restricted to a slave
Ioctl: Set / Clear DP data bits in I/O data image, not restricted to a slave

3.1.2.4 General DP-Slave input data device

Windows Name: \\.\PROFIBUS\BoardY\Pb0\DpSlaveInputData
Windows Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\DpSlaveInputData

Function: Read and write of any DP-Slave input data

Read: Read DP-Slave input data and current status
Ioctl: Write DP-Slave input data, read current status

3.1.2.5 General DP-Slave output data device

Windows Name: \\.\PROFIBUS\BoardY\Pb0\DpSlaveOutputData
Windows Alias Name: \\.\PROFIBUS\<SymbolicNodeName>\DpSlaveOutputData

Function Read DP-Slave output data

Read: Read DP-Slave output data and current status

3.1.3 Access rights

The board device may be opened any times for read access (to read the firmware version information), but
only once for write access. It may be opened for write access only if there is no other device open on this
board.

The service-oriented General Service Device may be opened any times for write access, but only once for
read access.

All data-oriented devices (General Data Device, DP Slave Data Devices) may opened any times for read
access, but only once for write access.

User Interface

User Manual Page: 7

3.2 PROGRAM INTERFACES

The PROFIBUS API for Windows supports two different program interfaces. Each of these interfaces has its
own advantages (+) and disadvantages (-). The following list should help you decide which interface to use.

• Windows System Interface

The Windows system interface consists of the standard Windows system calls for device handling.
These functions can be used to access the devices provided by the low-level kernel mode device driver.

+ Provides the whole functionality of the device drivers

+ Asynchronous read or write calls possible

− Most difficult to program

• PROFIBUS Application Program Interface

The PROFIBUS Application Program Interface (PAPI) provides two mechanisms for data exchange
between application and protocol software and host and controller:

- a send/receive interface using request blocks for service-oriented data exchange and

- a data interface, which is used for fast cycle data exchange.

All PROFIBUS API calls are implemented based on the functionality provided by the low-level device
driver.

PROFIBUS Application Program Interface

Page: 8 PROFIBUS

User Interface

User Manual Page: 9

3.3 PROFIBUS WINDOWS SYSTEM INTERFACE

The following Windows system calls can be used to handle the PROFIBUS devices. These calls are
subsequently described in detail:

CreateFile Open a PROFIBUS device

CloseHandle Close a PROFIBUS device

GetLastError Get the error code of the last failed system call

DeviceIOControl Send a control code to a PROFIBUS device

ReadFile Read data from a PROFIBUS device

ReadFileEx Read data asynchronously from a PROFIBUS device

WriteFile Write data to a PROFIBUS device

WriteFileEx Write data asynchronously to a PROFIBUS device

SetFilePointer Set the file pointer of a general data device

FileIOCompletionRoutine Callback routine for asynchronous data transfer

PROFIBUS Application Program Interface

Page: 10 PROFIBUS

3.3.1 Data structures

All Windows system Interface provides access to the service-oriented devices. A PROFIBUS frame consists
of a service-independent description and a service-specific service-specific data block with parameters and
data.

The data structure T_PROFI_SERVICE_DESCR describes the service to be performed by the protocol
software.

Description of the service description block:

typedef struct T_PROFI_SERVICE_DESCR
 {
 USIGN16 comm_ref;
 USIGN8 layer;
 USIGN8 service;
 USIGN8 primitive;
 INT8 invoke_id;
 INT16 result;
 } T_PROFI_SERVICE_DESCR;

The service description block's elements are as follows:

- comm_ref : Communication reference ("logical channel")
- layer: Layer instance the service invocation is directed to (FMS, FMB, FM7, DP, DPS, FDLIF,

FMS_USR, FMB_USR, FM7_USR, DP_USR, DPS_USR, FDLIF_USR)

- service_id : Service to be performed in the instance specified in the layer.

- primitive : Service primitives (request, indication, response, confirmation)

- invoke_id : ID to distinguish parallel service invocations

- result : Positive or negative result

The data block contains the service-specific data. Typically, for communication services these are data as
described in the PROFIBUS IEC 61158-5 AND IEC 61158-6

Construction of the service-specific data blocks is described in the manuals FMS, FMB, FM7, FDLIF, DP
and DP/V1.

User Interface

User Manual Page: 11

3.3.1 CreateFile

The CreateFile function opens a PROFIBUS device and returns a handle that can be used to access the
object.

HANDLE CreateFile
(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile
);

Function parameter description:

lpFileName: Points to a null-terminated string that specifies the name of the PROFIBUS device

to open.
dwDesiredAccess: Specifies the type of access to the device. An application can obtain read access,

write access or read-write access. Use the following flag constants to build a value
for this parameter. Both GENERIC_READ and GENERIC_WRITE must be set to
obtain read/write access. If dwDesiredAccess is 0, neither read nor write access is
allowed; only IOControl operations that do not need a specific access right can be
performed on the device.
Value Meaning
GENERIC_READ Specifies read access to the device. Data can be read from

the device, and the file pointer can be moved.
GENERIC_WRITE Specifies write access to the device. Data can be written to

the device, and the file pointer can be moved.
dwShareMode: Set of bit flags that specifies how the device can be shared. If dwShareMode is 0,

the device cannot be shared. No other open operations can be performed on the
device. This flag cannot extend the constraints described in chapter 4.1.6 (Access
rights).To share the device, use a combination of one or more of the following
values:
Value Meaning
FILE_SHARE_READ Other open operations can be performed on the device for

read access.
FILE_SHARE_WRITE Other open operations can be performed on the device for

write access.

PROFIBUS Application Program Interface

Page: 12 PROFIBUS

lpSecurityAttributes: Always should be NULL; security is not supported by the PROFIBUS device drivers.
dwCreationDistribution: Must be OPEN_EXISTING.
dwFlagsAndAttributes: Specifies the file attributes and flags for the file.

Attribute Meaning
FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This attribute is

valid only if used alone.
FILE_FLAG_OVERLAPPED Instructs the operating system to initialize the device

so ReadFile and WriteFile operations that take a
significant amount of time to process return
ERROR_IO_PENDING. When the operation is
finished, an event is set to the signaled state.
When you specify FILE_FLAG_OVERLAPPED, the
ReadFile and WriteFile functions must specify an
OVERLAPPED structure: i.e. when
FILE_FLAG_OVERLAPPED is specified, an
application must perform overlapped reading and
writing.
General Data Device: When
FILE_FLAG_OVERLAPPED is specified, the file
position must be passed as part of the lpOverlapped
parameter (pointing to an OVERLAPPED structure)
to the ReadFile and WriteFile functions.
This flag also enables more than one operation to
be performed simultaneously with the handle (a
simultaneous read and write operation, for
example).

hTemplateFile: This value must be NULL.

Possible function return values

- If the function succeeds, the return value is an open handle to the specified device.
- If the function fails, the return value is INVALID_HANDLE_VALUE. To obtain extended error information,

call GetLastError.

NOTES:

You can use the CreateFile function to open a logical PROFIBUS device. The function returns a
handle to the device. This handle can be used with the ReadFile, WriteFile, and DeviceIOControl
function.

The CloseHandle function is used to close a handle returned by CreateFile.

User Interface

User Manual Page: 13

Example

#include <windows.h>

...

{

 HANDLE hBoard;

 ULONG ErrorCode;

 hBoard = CreateFile ("\\\\.\\PROFIBUS\\Board0\\Board" // Name of the device

 GENERIC_READ, // Access mode

 FILE_SHARE_READ // Share mode

 NULL, // Pointer to securitydescriptor

 OPEN_EXISTING, // How to create

 FILE_ATTRIBUTE_NORMAL, // File attribute

 NULL, // Handle to template file

);

 if (hBoard == INVALID_HANDLE_VALUE)

 {

 // do error handling

 ErrorCode = GetLastError();

 ...

 }

 ...

}

PROFIBUS Application Program Interface

Page: 14 PROFIBUS

3.3.2 CloseHandle

The CloseHandle function closes an open handle.

BOOL CloseHandle

(
HANDLE hObject
);

Function parameter description:

hObject: Identifies an open device handle.

Possible function return values

- If the function succeeds, the return value is TRUE.-
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

NOTES:

CloseHandle invalidates the specified object.

Use CloseHandle to close handles returned by calls to the CreateFile function.

Closing an invalid handle raises an exception. This includes closing a handle twice and not
checking the return value and closing an invalid handle.

User Interface

User Manual Page: 15

Example

{

 HANDLE hDevice;

 // Open device

 ULONG ErrorCode;

 hDevice = CreateFile (....

 // do input / output

 ...

 // close device

 if (!CloseHandle (hDevice))

 {

 // do error handling

 ErrorCode = GetLastError();

 ...

 }

}

PROFIBUS Application Program Interface

Page: 16 PROFIBUS

3.3.3 GetLastError

The GetLastError function returns the calling thread's last-error code value. The last-error code is
maintained on a per-thread basis. Multiple threads do not overwrite each other's last-error code.

DWORD GetLastError

(
VOID
);

Function parameter description:

This function has no parameters.

Possible function return values

The return value is the calling thread's last-error code value.

NOTES:

You should call the GetLastError function immediately when a return value of a function indicates
that such a call will return useful data. Reason: Some functions call SetLastError(0) when they
succeed, wiping out the error code set by the most recently failed function.

Most functions in the Windows API that set the thread's last error code value set it when they fail; a
few functions set it when they succeed. Function failure is typically indicated by a return value error
code such as FALSE, NULL, 0xFFFFFFFF, or −1. Some functions call SetLastError under conditions
of success; these cases are noted in the reference page of each function.

The PROFIBUS driver functions only set the last error code when they fail.

Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is called the "Customer code
flag" and is reserved for application-defined error codes; no system error code has this bit set. This
bit set to one indicates that the error code is defined by the PROFIBUS software. The lower two
bytes include the PROFIBUS error code.

To obtain an error string for operating system error codes, use the FormatMessage function. A
complete list of system error codes can be found in the WINERROR.H header file in the Windows
SDK. The list of application-defined error codes can be found in this manual.

User Interface

User Manual Page: 17

Example

 #include <windows.h>

 #include "pb_err.h"

 #define CUSTOMER_CODE_FLAG 0x20000000

 ...

 {

 ULONG ErrorCode;

 // do PROFIBUS IO

 ...

 // get last error

 ErrorCode = GetLastError ();

 // check for Customer code flag

 if (ErrorCode & CUSTOMER_CODE_FLAG)

 {

 // Customer code flag is set: do profibus error handling

 // profibus error code is the low word of ErrorCode

 switch (LOWORD(ErrorCode))

 {

 case E_IF_FATAL_ERROR:

 ...

 break;

 case E_IF_SERVICE_CONSTRAINT_CONFLICT:

 ...

 break;

 ...

 }

 }

 else // System error

 {

 ...

 }

}

PROFIBUS Application Program Interface

Page: 18 PROFIBUS

3.3.4 DeviceIoControl

The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding logical device to perform the specified operation.

BOOL DeviceIoControl

(
HANDLE hDevice,
DWORD dwIoControlCode,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped
);

Function parameter description:

hDevice: Handle to the device that is to perform the operation. Call the CreateFile function to

obtain a device handle.
dwIoControlCode: Specifies the control code for the operation. This value identifies the specific

operation to be performed and the type of device on which the operation is to be
performed. The values defined are described later in this section.

lpInBuffer: Pointer to a buffer that contains the data required to perform the operation. This
parameter can be NULL if the dwIoControlCode parameter specifies an operation
that does not require input data.

nInBufferSize: Specifies the size, in bytes, of the buffer pointed to by lpInBuffer.
lpOutBuffer: Pointer to a buffer that receives the operation's output data. This parameter can be

NULL if the dwIoControlCode parameter specifies an operation that does not
produce output data.

nOutBufferSize: Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.
lpBytesReturned: Pointer to a variable that receives the size, in bytes, of the data stored into the

buffer pointed to by lpOutBuffer. lpBytesReturned cannot be NULL. Even when an
operation does not produce output data, and lpOutBuffer can be NULL, the
DeviceIoControl function makes use of the variable pointed to by lpBytesReturned.
After such an operation, the value of the variable is inapplicable.

lpOverlapped: Pointer to an OVERLAPPED structure.
If hDevice was opened with the FILE_FLAG_OVERLAPPED flag, this parameter
must point to a valid OVERLAPPED structure. In this case, DeviceIoControl is
performed as an overlapped (asynchronous) operation. If the device was opened
with FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the function fails in
unpredictable ways.
If hDevice was opened without specifying the FILE_FLAG_OVERLAPPED flag, this
parameter is ignored, and the DeviceIoControl function does not return until the
operation has been completed or an error occurs.

User Interface

User Manual Page: 19

Possible function return values

- If the function succeeds, the return value is TRUE.-
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

NOTES:

If hDevice was opened with FILE_FLAG_OVERLAPPED and the lpOverlapped parameter points to
an OVERLAPPED structure, DeviceIoControl is performed as an overlapped (asynchronous)
operation. In this case, the OVERLAPPED structure must contain a handle to a manual-reset event
object created by a call to the CreateEvent function.

If the overlapped operation cannot be completed immediately, the function returns FALSE, and
GetLastError returns ERROR_IO_PENDING, indicating that the operation is executing in the
background. When this happens, the operating system sets the event object in the OVERLAPPED
structure to the non-signaled state before DeviceIoControl returns. The system then sets the event
object to the signaled state when the operation has been completed. The calling thread can use any
of the wait functions to wait for the event object to be signaled, and then use the
GetOverlappedResult function to determine the results of the operation. The GetOverlappedResult
function reports the success or failure of the operation and the number of bytes returned in the
lpOutBuffer buffer.

Control codes

The following control codes are supported by the PROFIBUS device driver and defined in the file
"pb_ntdrv.h":

Value Meaning

IOCTL_PROFI_SET_TIMEOUT Set time-out values for read and write

lpInBuffer: Pointer to a PROFI_TIMEOUT data
nInBufferSize: Size of PROFI_TIMEOUT data
lpOutBuffer: NULL
nOutBufferSize: 0

Devices: General service device
Required Access: Read

IOCTL_PROFI_GET_TIMEOUT Read time-out values for read and write

lpInBuffer: NULL
nInBufferSize: 0
lpOutBuffer Pointer to PROFI_TIMEOUT data
nOutBufferSize Size of PROFI_TIMEOUT data

Devices: General service device
Required Access: None

PROFIBUS Application Program Interface

Page: 20 PROFIBUS

Value Meaning

IOCTL_PROFI_GET_DATA_IMAGE Read a data image from the controller.

lpInBuffer: Pointer to PROFI_DATA_IMAGE_DESCR
 data
nInBufferSize: Size of the PROFI_DATA_IMAGE_DESCR
 data
lpOutBuffer: Buffer to receive the data image
nOutBufferSize: Size of the data image buffer
lpBytesReturned: Size of the read date image

Devices: General board device
Required Access: None

IOCTL_PROFI_SET_DPS_DATA Write DP-Slave input data and read DP-Slave input data state.

lpInBuffer: DP-Slave input data
nInBufferSize: Size of the DP-Slave input data
lpOutBuffer: Buffer to receive the input data state
nOutBufferSize: sizeof(USIGN8)
lpBytesReturned: Size of the read data

Devices: DP-Slave input data device
Required Access: None

IOCTL_PROFI_SET_DP_BITS Set Bits in DP slave I/O data image.

lpInBuffer: Pointer to PROFI_DP_BIT_ACCESS data
nInBufferSize: Size of PROFI_DP_BIT_ACCESS data
lpOutBuffer: NULL
nOutBufferSize: 0
lpBytesReturned: Pointer to variable to receive output byte
 count, always zero

Devices: General DP-Master data device
Required Access: None

IOCTL_PROFI_CLEAR_DP_BITS Clear Bits in DP slave I/O data image.

lpInBuffer: Pointer to PROFI_DP_BIT_ACCESS data
nInBufferSize: Size of PROFI_DP_BIT_ACCESS data
lpOutBuffer: NULL
nOutBufferSize: 0
lpBytesReturned: Pointer to variable to receive output byte
 count, always zero

Devices: General DP-Master data device
Required Access: None

User Interface

User Manual Page: 21

Example

{

 HANDLE hService;

 ULONG nBytes;

 ULONG ReadWriteTimeout[2];

 // Open service device

 hService = CreateFile ("\\\\.\\PROFIBUS\\Board0\\Pb0\\Service",

 GENERIC_READ,0,NULL,OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,NULL);

 if (hService != INVALID_HANDLE)

 {

 ReadWriteTimeout[0] = 100;

 ReadWriteTimeout[1] = 100;

 if (!DeviceIoControl((HANDLE) hService,

 (DWORD) IOCTL_PROFI_SET_TIMEOUT,

 (LPVOID) ReadWriteTimeout,

 (DWORD) 2 * sizeof(ULONG),

 (LPVOID) NULL,

 (DWORD) 0,

 (LPDWORD) &nBytes,

 NULL

 {

 // do error handling - DeviceIoControl failed

 ...

)

 ...

 }

}

PROFIBUS Application Program Interface

Page: 22 PROFIBUS

3.3.5 ReadFile

The ReadFile function reads data from a device. See the description of each logical device for a description
of the data to read. File positions are considered only during read operations from the general data devices.

BOOL ReadFile

(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead,
LPOVERLAPPED lpOverlapped
);

Function parameter description:

hFile: Identifies the file to be read. The file handle must have been created with

GENERIC_READ access to the file. For asynchronous read operations,
hFile can be any handle opened with the FILE_FLAG_OVERLAPPED flag
by the CreateFile function.

lpBuffer: Points to the buffer that receives the data read from the device.
nNumberOfBytesToRead: Specifies the maximum number of bytes to be read from the device.
lpNumberOfBytesRead: Points to the number of bytes read.

If lpOverlapped is NULL, lpNumberOfBytesRead cannot be NULL.
If lpOverlapped is not NULL, lpNumberOfBytesRead can be NULL. If this is
an overlapped read operation, the number of bytes read can be fetched by
calling GetOverlappedResult.

lpOverlapped: Points to an OVERLAPPED structure. This structure is required if hFile was
created with FILE_FLAG_OVERLAPPED.
If hFile was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped
parameter must not be NULL. It must point to a valid OVERLAPPED
structure. If hFile was created with FILE_FLAG_OVERLAPPED and
lpOverlapped is NULL, the function can incorrectly report that the read
operation is complete.
If hFile was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is
not NULL, the read operation starts at the offset specified in the
OVERLAPPED structure and ReadFile may return before the read
operation has been completed. In this case, ReadFile returns FALSE, and
the GetLastError function returns ERROR_IO_PENDING. This allows the
calling process to continue while the read operation finishes. The event
specified in the OVERLAPPED structure is set to the signaled state upon
completion of the read operation.
If hFile was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped
is NULL, the read operation starts at the current file position, and ReadFile
does not return until the operation has been completed.
If hFile is not opened with FILE_FLAG_OVERLAPPED and lpOverlapped is
not NULL, the read operation starts at the offset specified in the
OVERLAPPED structure. ReadFile does not return until the read operation
has been completed.

Possible function return values:

User Interface

User Manual Page: 23

- If the function succeeds, the return value is TRUE. If the return value is TRUE and the number of bytes

read is zero, no data are available at the device.
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

NOTES:

Applications must neither read from nor write to the input buffer that a read operation is using until
the read operation completes. A premature access to the input buffer may lead to corruption of the
data read into that buffer.

The ReadFile function may fail and return ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY whenever there are too many outstanding asynchronous I/O
requests.

If you read from the general service device, the comm_ref field of the service descriptor block
contains a number of status bits in the high byte. Only the low byte contains the communication
reference of the service.

Usage
Board device: Reads the version information of the PROFIBUS protocol firmware

lpBuffer: pointer to an array of characters
nNumberOfBytesToRead: the maximum size of the version

information is defined in
VERSION_STRING_LENGTH

Service-oriented device: Reads a received frame. The frame consists of the service description
followed by the service and primitive specific data.

lpBuffer: pointer to the buffer that receives the
frame data

nNumberOfBytesToRead: size of the buffer pointed by lpBuffer. A
frame could have the maximum size
defined in MAX_FMS_PDU_LENGTH

lpNumberOfBytesRead: size of the received frame. If the size of
the frame is 0 and the function succeeded,
no frame was received during the time-out
time.

Data-oriented devices: Reads DP data. The DP slave data devices check the status information of

the slave an return the error E_SLAVE_ERROR if the slave status is bad.

lpBuffer: Pointer to the buffer that receives the DP
data

nNumberOfBytesToRead Size of the buffer. The maximum amount
of bytes to read on DP slave data devices
is the maximum read size of the slave.

PROFIBUS Application Program Interface

Page: 24 PROFIBUS

Examples

{

 HANDLE hBoard; // Handle of the board device

 HANDLE hService; // Handle of the general service device

 char FirmwareVersion[VERSION_STRING_LENGTH];

 char Data[255];

 // Open board and service device

 ...

 // Read the firmware version info from the board device

 if(ReadFile(hBoard,FirmwareVersion,VERSION_STRING_LENGTH,&nBytes,NULL))

 {

 // read version info

 ...

 }

 // Read from the service device

 if(ReadFile(hService,Data,255,&nBytes,NULL))

 {

 if (nBytes > 0)

 // Frame received

 else

 // No frame received during time-out

 ...

 }

}

{

 HANDLE hData; // Handle of the DP data device

 BYTE Data[255];

 // Create and open the DP data device

 ...

 // Read form the DP data device

 if(ReadFile(hData,(LPVOID)&Data,sizeof(Data),&nBytes,NULL))

 {

 // read DP data

 ...

 }

}

User Interface

User Manual Page: 25

3.3.6 ReadFileEx

The ReadFileEx function reads data from a file asynchronously. It is designed solely for asynchronous
operation, unlike the ReadFile function, which is designed for both synchronous and asynchronous
operation. ReadFileEx lets an application perform other processing during a file read operation.
The ReadFileEx function reports its completion status asynchronously, calling a specified completion
routine when reading is completed and the calling thread is in an alertable wait state.

BOOL ReadFileEx

(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPOVERLAPPED lpOverlapped,
LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine
);

Function parameter description:

hFile: An open handle that specifies the device to be read from. This file handle

must have been created with the FILE_FLAG_OVERLAPPED flag and must
have GENERIC_READ access to the file.

lpBuffer: Points to a buffer that receives the data read from the file.
This buffer must remain valid for the duration of the read operation. The
application should not use this buffer until the read operation is completed.

nNumberOfBytesToRead: Specifies the maximum number of bytes to be read from the file. If
nNumberOfBytesToRead is zero, this function does nothing.

lpOverlapped: Points to an OVERLAPPED data structure that supplies data to be used
during the asynchronous (overlapped) file read operation.
If the device specified by hFile supports the concept of byte offsets (these are
the general data devices, e.g. "\\PROFIBUS\Board0\DpData") , the caller of
ReadFileEx must specify a byte offset at which reading should begin. The
caller specifies the byte offset by setting the OVERLAPPED structure's Offset
member; the OffsetHigh member must be set to 0.
If the file entity specified by hFile does not support the concept of byte, the
caller must set the Offset and OffsetHigh members to zero, or ReadFileEx
fails.
The ReadFileEx function ignores the OVERLAPPED structure's hEvent
member. An application is free to use that member for its own purposes in the
context of a ReadFileEx call. ReadFileEx signals completion of its read
operation by calling, or queuing a call to, the completion routine pointed to by
lpCompletionRoutine, so it does not need an event handle.
The ReadFileEx function does use the OVERLAPPED structure's Internal
and InternalHigh members. An application should not set these members.
The OVERLAPPED data structure pointed to by lpOverlapped must remain
valid for the duration of the read operation. It should not be a variable that
can go out of scope while the file read operation is in progress.

lpCompletionRoutine: Points to the completion routine to be called when the read operation is
complete and the calling thread is in an alertable wait state. For more
information about the completion routine, see FileIOCompletionRoutine.

PROFIBUS Application Program Interface

Page: 26 PROFIBUS

Possible function return values(defined in the header file PB_ERR.H):

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

If the function succeeds, the calling thread has an asynchronous I/O operation pending: the overlapped read
operation from the file. When this I/O operation completes and the calling thread is blocked in an alertable
wait state, the system calls the function pointed to by lpCompletionRoutine, and the wait state completes
with a return code of WAIT_IO_COMPLETION.
If the function succeeds and the file reading operation completes but the calling thread is not in an alertable
wait state, the system queues the completion routine call, holding the call until the calling thread enters an
alertable wait state.

NOTES:

Applications must neither read from nor write to the input buffer that a read operation is using until
the read operation completes. A premature access to the input buffer may lead to corruption of the
data read into that buffer.

The ReadFileEx function may fail if there are too many outstanding asynchronous I/O requests. In
the event of such a failure, GetLastError can return ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY.

If hFile is a handle to a named pipe or other file entity that does not support the byte-offset concept,
the Offset and OffsetHigh members of the OVERLAPPED structure pointed to by lpOverlapped must
be zero, or ReadFileEx fails.

An application uses the WaitForSingleObjectEx, WaitForMultipleObjectsEx, and SleepEx functions
to enter an alertable wait state.

Usage

There is no sense in using the ReadFileEx function with board or data-oriented devices, because these
system calls are served immediately by the PROFIBUS device drivers. A read operation may become
pending only on the service-oriented devices.

Service-oriented devices: Starts the asynchronous read of a received frame

lpBuffer: Pointer to the buffer that receives
the frame data

nNumberOfBytesToRead: The maximum size of a frame is
defined in
MAX_FMS_PDU_LENGTH.

User Interface

User Manual Page: 27

3.3.7 WriteFile

The WriteFile function writes data to a file and is designed for both synchronous and asynchronous
operation.

BOOL WriteFile

(
HANDLE hFile,
LPCVOID lpBuffer,
DWORD nNumberOfBytesToWrite,
LPDWORD lpNumberOfBytesWritten,
LPOVERLAPPED lpOverlapped
);

Function parameter description:

hFile: Identifies the file to be written to. The file handle must have been created
with GENERIC_WRITE access to the file. For asynchronous write
operations, hFile can be any handle opened with the
FILE_FLAG_OVERLAPPED flag by the CreateFile function.

lpBuffer: Points to the buffer containing the data to be written to the file.
nNnumberOfBytesToWrite: Specifies the number of bytes to write to the file.
lpNumberOfBytesWritten: Points to the number of bytes written by this function call.

If lpOverlapped is NULL, lpNumberOfBytesWritten cannot be NULL.
If lpOverlapped is not NULL, lpNumberOfBytesWritten can be NULL. If this
is an overlapped write operation, the number of bytes written can be fetched
by calling GetOverlappedResult.

lpOverlapped: Points to an OVERLAPPED structure. This structure is required if hFile was
opened with FILE_FLAG_OVERLAPPED.
If hFile was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped
parameter must not be NULL. It must point to a valid OVERLAPPED
structure. If hFile was opened with FILE_FLAG_OVERLAPPED and
lpOverlapped is NULL, the function can incorrectly report that the write
operation is complete.
If hFile was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is
not NULL, the write operation starts at the offset specified in the
OVERLAPPED structure, and WriteFile may return before the write
operation has been completed. In this case, WriteFile returns FALSE, and
the GetLastError function returns ERROR_IO_PENDING. This allows the
calling process to continue processing while the write operation is being
completed. The event specified in the OVERLAPPED structure is set to the
signaled state upon completion of the write operation.
If hFile was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped
is NULL, the write operation starts at the current file position, and WriteFile
does not return until the operation has been completed.
If hFile was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped
is not NULL, the write operation starts at the offset specified in the
OVERLAPPED structure, and WriteFile does not return until the write
operation has been completed.

PROFIBUS Application Program Interface

Page: 28 PROFIBUS

Possible function return values(defined in the header file PB_ERR.H):

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

NOTES:

Applications must neither read from nor write to the output buffer that a write operation is using
until the write operation completes. Premature access of the output buffer may lead to corruption of
the data written from that buffer.

The WriteFile function may fail with ERROR_INVALID_USER_BUFFER or ERROR_NOT_ENOUGH_
MEMORY whenever there are too many outstanding asynchronous I/O requests.

Usage

Service-oriented device: Send a frame. The frame consists of the service description followed by the

service and primitive-specific data.
lpBuffer: Pointer to the frame to send
nNumberOfBytesToWrite: Size of the frame

The WriteFile function fails with the
PROFIBUS error E_IF_NO_CNTRL_RES if
the time-out for sending of the frame
elapsed.

Data-oriented devices: Writes DP data. The DP slave data devices check the status information of

the slave and return the error E_SLAVE_ERROR if the slave status is bad.
lpBuffer: Pointer to the DP data which should be

written.
nNumberOfBytesToWrite: Size of the DP data to write. The maximum

amount of bytes to write to DP slave data
devices is the maximum write size of the
slave.

User Interface

User Manual Page: 29

Example

{

 HANDLE hService; // Handle of the general service device

 T_PROFI_SERVICE_DESCR Sdb; // Service description

 T_DP_READ_REQ DpReadReq; // Read request

 BYTE Data[255];

 USIGN8 InvokeId

 ...

 // Open devices and create the DP data device

 ...

 // All devices open with read access

 // Send a DP_READ request

 // Fill the service description

 Sdb.layer = DP;

 Sdb.service = DP_READ;

 Sdb.primitive = REQ;

 Sdb.invoke_id = 0;

 Sdb.comm_ref = 0;

 // Fill the DP-Read request

 ...

 // Create the frame

 memcpy(Data,&Sdb,sizeof(T_PROFI_SERVICE_DESCR));

 memcpy(Data + sizeof(T_PROFI_SERVICE_DESCR),

 &DpReadReq,sizeof(T_DP_READ_REQ));

 // Send the frame

 if(!WriteFile(hService,Data,sizeof(T_PROFI_SERVICE_DESCR) +

 sizeof(T_DP_READ_REQ),&nBytes,NULL))

 {

 // error handling

 ...

 }

}

PROFIBUS Application Program Interface

Page: 30 PROFIBUS

3.3.8 WriteFileEx

The WriteFileEx function writes data to a file. It is designed solely for asynchronous operation, unlike
WriteFile, which is designed for both synchronous and asynchronous operation. WriteFileEx reports its
completion status asynchronously, calling a specified completion routine when writing is completed and the
calling thread is in an alertable wait state.

BOOL WriteFileEx
(
HANDLE hFile,
LPCVOID lpBuffer,
DWORD nNumberOfBytesToWrite,
LPOVERLAPPED lpOverlapped,
LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine
);

Function parameter description:

hFile: An open handle that specifies the device to be written to. This file handle
must have been created with the FILE_FLAG_OVERLAPPED flag and with
GENERIC_WRITE access to the file.

lpBuffer: Points to the buffer containing the data to be written to the file.
This buffer must remain valid for the duration of the write operation. The
caller must not use this buffer until the write operation is completed.

nNumberOfBytesToWrite: Specifies the number of bytes to write to the file.
If nNumberOfBtyesToWrite is zero, this function does nothing.

lpOverlapped: Points to an OVERLAPPED data structure that supplies data to be used
during the overlapped (asynchronous) write operation.
For devices that support byte offsets (these are the general data devices,
e.g. "\\PROFIBUS\Board0\Pb0\DpData"), you must specify a byte offset at
which to start writing to the file. Specify this offset by setting the Offset
member of the OVERLAPPED structure and setting OffsetHigh to zero. For
files that do not support byte offsets, set Offset and OffsetHigh to zero, or
WriteFileEx fails.
The WriteFileEx function ignores the OVERLAPPED structure's hEvent
member. An application is free to use that member for its own purposes in
the context of a WriteFileEx call. WriteFileEx signals completion of its
writing operation by calling, or queuing a call to, the completion routine
pointed to by lpCompletionRoutine, so it does not need an event handle.
The WriteFileEx function uses the Internal and InternalHigh members of the
OVERLAPPED structure. Do not change the value of these members.
The OVERLAPPED data structure must remain valid for the duration of the
write operation. It should not be a variable that can go out of scope while the
write operation is pending completion.

lpCompletionRoutine: Points to a completion routine to be called when the write operation has
been completed and the calling thread is in an alertable wait state. For more
information about this completion routine, see FileIOCompletionRoutine.

Possible function return values(defined in the header file PB_ERR.H):

User Interface

User Manual Page: 31

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

If the WriteFileEx function succeeds, the calling thread has an asynchronous I/O operation pending: the
overlapped write operation to the device. When this I/O operation finishes and the calling thread is blocked
in an alertable wait state, the operating system calls the function pointed to by lpCompletionRoutine, and the
wait completes with a return code of WAIT_IO_COMPLETION.

If the function succeeds and the file-writing operation finishes but the calling thread is not in an alertable
wait state, the system queues the call to *lpCompletionRoutine, holding the call until the calling thread
enters an alertable wait state.

NOTES:

Applications must neither read from nor write to the output buffer that a write operation is using
until the write operation completes. Premature access of the output buffer may lead to corruption of
the data written from that buffer.

The WriteFileEx function may fail, returning the messages ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY if there are too many outstanding asynchronous I/O requests.

An application uses the WaitForSingleObjectEx, WaitForMultipleObjectsEx,
MsgWaitForMultipleObjectsEx, SignalObjectAndWait, and SleepEx functions to enter an alertable
wait state.

Usage

There is no sense in using the WriteFileEx function with board or data-oriented devices, because this
system calls are served immediately by the PROFIBUS device drivers. Only on the service-oriented
devices a write operation may become pending.

Service-oriented devices: Starts the asynchronous send of a frame

lpBuffer. Pointer to the frame to send
nNumberOfBytesToWrite: Size of the frame

PROFIBUS Application Program Interface

Page: 32 PROFIBUS

3.3.9 GetOverlappedResult

The GetOverlappedResult function returns the results of an overlapped operation on the specified file,
named pipe, or communications device.

BOOL GetOverlappedResult

(
HANDLE hFile,
LPOVERLAPPED lpOverlapped,
LPDWORD lpNumberOfBytesTransferred,
BOOL bWait
);

Function parameter description:

hFile: Identifies the device. This is the same handle that was specified when the

overlapped operation was started by a call to the ReadFile, WriteFile, or
DeviceIoControl function.

lpOverlapped: Points to an OVERLAPPED structure that was specified when the
overlapped operation was started.

lpNumberOfBytesTransferred: This value is undefined. Points to a 32-bit variable that receives the number
of bytes that were actually transferred by a read or write operation.

bWait: Specifies whether the function should wait for the pending overlapped
operation to be completed. If TRUE, the function does not return until the
operation has been completed. If FALSE and the operation is still pending,
the function returns FALSE and the GetLastError function returns
ERROR_IO_INCOMPLETE.

Possible function return values:

- If the function succeeds, the return value is TRUE.
- If the function fails, the return value is FALSE. To obtain extended error information, call GetLastError.

NOTES:

The results reported by the GetOverlappedResult function are those of the specified handle's last
overlapped operation to which the specified OVERLAPPED structure was provided and for which
the operation's results were pending. A pending operation is indicated when the function that
started the operation returns FALSE and the GetLastError function returns ERROR_IO_PENDING.
When an I/O operation is pending, the function that started the operation resets the hEvent member
of the OVERLAPPED structure to the non-signaled state. Then when the pending operation has
been completed, the system sets the event object to the signaled state.

If the bWait parameter is TRUE, GetOverlappedResult determines whether the pending operation
has been completed by waiting for the event object to be in the signaled state.

User Interface

User Manual Page: 33

If the hEvent member of the OVERLAPPED structure is NULL, the system uses the state of the hFile
handle to signal when the operation has been completed. Use of file, named pipe, or
communications-device handles for this purpose is discouraged. It is safer to use an event object
because of the confusion that can occur when multiple simultaneous overlapped operations are
performed on the same file, named pipe, or communications device. In this situation, there is no
way to know which operation caused the object's state to be signaled.

Specify a manual-reset event object in the OVERLAPPED structure. If an auto-reset event object is
used, the event handle must not be specified in any other wait operation in the interval between
starting the overlapped operation and the call to GetOverlappedResult. For example, the event
object is sometimes specified in one of the wait functions to wait for the operation's completion.
When the wait function returns, the system sets an auto-reset event's state to non-signaled, and a
subsequent call to GetOverlappedResult with the bWait parameter set to TRUE causes the function
to be blocked indefinitely.

PROFIBUS Application Program Interface

Page: 34 PROFIBUS

3.3.10 SetFilePointer

The only type of PROFIBUS devices that support the concept of file pointers is the general data device. The
SetFilePointer function moves the file pointer of an open general data device.

DWORD SetFilePointer

(
HANDLE hFile,
LONG lDistanceToMove,
PLONG lpDistanceToMoveHigh,
DWORD dwMoveMethod
);

Function parameter description:

hFile: Identifies the file whose file pointer is to be moved. The file handle must

have been created with GENERIC_READ or GENERIC_WRITE access to
the file.

IDistanceToMove: Specifies the number of bytes to move the file pointer. A positive value
moves the pointer forward in the file and a negative value moves it
backward.

lpDistanceToMoveHigh: Must be NULL for PROFIBUS devices
dwMoveMethod: Specifies the starting point for the file pointer move. This parameter can be

one of the following values:
Value Meaning
FILE_BEGIN The starting point is zero or the beginning of the file.

If FILE_BEGIN is specified, DistanceToMove is
interpreted as an unsigned location for the new file
pointer.

FILE_CURRENT The current value of the file pointer is the starting
point.

FILE_END Cannot be used for PROFIBUS devices.

Possible function return values:

- If the SetFilePointer function succeeds, the return value is the low-order doubleword of the new file

pointer.
- If the function fails, the return value is 0xFFFFFFFF. To obtain extended error information, call

GetLastError.

User Interface

User Manual Page: 35

NOTES:

You should be careful when setting the file pointer in a multithreaded application. For example, an
application whose threads share a file handle, update the file pointer, and read from the file must
protect this sequence by using a critical section object or mutex object.

The PROFIBUS general data device doesn’t change the position of the file pointer with a read or
write operation. The file pointer is only changed with the SetFilePointer function. You do not have
to set the file pointer before every ReadFile or WriteFile call. Once set, the file pointer stays at the
position.

Example
{

 HANDLE hData; // Handle of the general data device

 DWORD FilePointer // File pointer

 LONG Distance; // Distance to move

 ...

 // Open DP data device

 ...

 FilePointer = SetFilePointer (hData, Distance, NULL, FILE_BEGIN)

 if (FilePointer == 0xffffffff)

 {

 // error handling

 ...

 }

 // Continue with read and write to the general data device

 ...

}

PROFIBUS Application Program Interface

Page: 36 PROFIBUS

3.3.11 FileIOCompletionRoutine

The FileIOCompletionRoutine function is called when an asynchronous I/O function (ReadFileEx or
WriteFileEx) is completed and the calling thread is in an alertable wait (using the SleepEx,
WaitForSingleObjectEx, or WaitForMultipleObjectsEx function with the fAlertable flag set to TRUE).

VOID FileIOCompletionRoutine

(
DWORD dwErrorCode,
DWORD dwNumberOfBytesTransfered,
LPOVERLAPPED lpOverlapped
);

Function parameter description:

dwErrorCode: Specifies the I/O completion status. This parameter may be one of the

following values:
Value Meaning
0 The I/O was successful.
ERROR_HANDLE_EOF The ReadFileEx function tried to read past

the end of the file.
dwNumberOfBytesTransfered: Specifies the number of bytes transferred. If an error occurs, this parameter

is zero.
lpOverlapped: Points to the OVERLAPPED structure specified by the asynchronous I/O

function.
Windows does not use the hEvent member of the OVERLAPPED structure;
the calling application may use this member to pass information to the
completion routine. Windows does not use the OVERLAPPED structure
after the completion routine is called, so the completion routine can de-
allocate the memory used by the overlapped structure.

Possible function return values:

This function does not return a value.

NOTES:

The FileIOCompletionRoutine function is a placeholder for an application-defined or library-defined
function name.

Returning from this function allows another pending I/O completion routine to be called. All waiting
completion routines are called before the alertable thread's wait is satisfied with a return code of
WAIT_IO_COMPLETION. Windows may call the waiting completion routines in any order. They may
or may not be called in the order the I/O functions are completed.

Each time Windows calls a completion routine, it uses some of the application's stack. If the
completion routine does additional asynchronous I/O and alertable waits, the stack may grow.

User Interface

User Manual Page: 37

Usage

FileIOCompletionRoutine for ReadFileEx:

Service-oriented device: Fetches the result of the asynchronous read of a received frame.

dwNumberOfBytesTransfered: Size of the received frame. If the
size of the frame is 0, no frame was
received during the time-out time

FileIOCompletionRoutine for WriteFileEx:

Service-oriented device: Fetches the result of the asynchronous write of a sent frame.

dwNumberOfBytesTransfered: Size of the sent frame.

PROFIBUS Application Program Interface

Page: 38 PROFIBUS

3.4 PROFIBUS APPLICATION PROGRAM INTERFACE (C-INTERFACE)

The PROFIBUS Application Program Interface (PAPI) provides two mechanisms for data exchange
between application and protocol software and host and controller:

- a send/receive interface using request blocks for service-oriented data exchange and

- a data interface, which is used for fast cycle data exchange.

The PROFIBUS API consists of these functions:

papi_init Initialize interface

papi_end Shut down interface

papi_snd_req_res Send frame

papi_rcv_con_ind Receive frame

papi_set_data Write data

papi_get_data Read data

papi_set_dps_input_data Write DP-Slave input data

papi_get_dps_input_data Read DP-Slave input data

papi_get_dps_output_data Read DP-Slave output data

papi_get_versions Read version strings

papi_get_serial_device_number Read serial device number

papi_get_last_error Returns an additional last error code for
INTERFACE-ERRORs

The service-oriented functions use the general service device of the low-level kernel mode driver and the
data-oriented functions use the general DP-Master data device, DP-Slave input data device or DP-Slave
output data device of the low-level kernel mode driver.

User Interface

User Manual Page: 39

3.4.1 Data structures

The PROFIBUS Application Program Interface provides access to the service-oriented devices. A
PROFIBUS frame consists of a service-independent description and a service-specific service-specific data
block with parameters and data.

The data structure T_PROFI_SERVICE_DESCR describes the service to be performed by the protocol
software.

Description of the service description block:

typedef struct T_PROFI_SERVICE_DESCR
 {
 USIGN16 comm_ref;
 USIGN8 layer;
 USIGN8 service;
 USIGN8 primitive;
 INT8 invoke_id;
 INT16 result;
 } T_PROFI_SERVICE_DESCR;

The service description block's elements are as follows:

- comm_ref : Communication reference ("logical channel")
- layer: Layer instance the service invocation is directed to (FMS, FMB, FM7, DP, DPS, FDLIF,

FMS_USR, FMB_USR, FM7_USR, DP_USR, DPS_USR, FDLIF_USR)

- service_id : Service to be performed in the instance specified in the layer.

- primitive : Service primitives (request, indication, response, confirmation)

- invoke_id : ID to distinguish parallel service invocations

- result : Positive or negative result

The data block contains the service-specific data. Typically, for communication services these are data as
described in the PROFIBUS IEC 61158-5 AND IEC 61158-6

Construction of the service-specific data blocks is described in the manuals FMS, FMB, FM7, FDLIF, DP
and DP/V1.

3.4.2 Initialization and Shut down

The initialization function papi_init is used to initialize the PROFIBUS API and open the low-level devices
of the PROFIBUS hardware driver.

PROFIBUS Application Program Interface

Page: 40 PROFIBUS

3.4.2.1 Papi-Init

The papi_init function is used to initialize the PROFIBUS API and to open the low-level devices of the
desired interface (board) of the PROFIBUS hardware driver. The function has to be called before any
other function of PROFIBUS-API is called

INT16 papi_init

(
IN USIGN8 Board,
IN USIGN32 ReadTimeout,
IN USIGN32 WriteTimeout
);

Function parameter description:

Board: Desired board- / interface number
ReadTimeout: ReceiveTimeout in msec (WAIT_FOR_EVER for infinity wait).
WriteTimeout: Send Timeout in msec (WAIT_FOR_EVER for infinity wait).

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (0x00) Interface is initialized
- E_IF_CMI_ERROR (0x14) Can not set timeout values
- E_IF_SERVICE_NOT_EXECUTABLE (0x19) Application has called papi_init before
- E_IF_READING_REGISTRY (0xF3) Error reading registry
- E_IF_OS_ERROR (0xFF) Can not open low-level device(s)

Example

#include "pb_if.h"

...

{

 INT16 Result;

 USIGN8 BoardNr;

 USIGN32 ReadTimeout, WriteTimeout;

 ...

 if (E_OK == (Result = papi_init(BoardNr,ReadTimeout,WriteTimeout)))

 {

 ... // PAPI is initialized

 }

}

User Interface

User Manual Page: 41

3.4.2.2 Papi-End

The papi_end function is used to shut down the PROFIBUS API. This means that the low-level devices
will be closed.

INT16 papi_end

(
IN USIGN8 Board
);

Function parameter description:

Board: Desired board- / interface number

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (0x00) Shutdown excuted successfully

Example

...

#include "pb_if.h"

...

{

 USIGN8 BoardNr; // Board (Interface) number

 // Initialize PROFIBUS API

 ...

 // Shut down PROFIBUS API

 papi_end(BoardNr);

}

PROFIBUS Application Program Interface

Page: 42 PROFIBUS

3.4.3 Send / Receive Interface

The send/receive interface provides by means for both control flow and data flow between host and
controller.

Data flow between the application and the communication is described by a service invariant and a large
number of service specific data structures.

Control flow is directed by means of two functions, which control the data flow in both directions.

The two cases described above are covered by two interface functions in the Softing PROFIBUS
implementations.

The papi_snd_req_res function is used for sending requests and responses. The papi_rcv_con_ind
function is used to receive confirmations and indications.

3.4.3.1 Papi-Snd-Req-Res

The papi_snd_req_res function is used for sending requests and responses to PROFIBUS interface.

INT16 papi_snd_req_res

(
IN USIGN8 Board,
IN T_PROFI_SERVICE_DESCR* pSdb,
IN VOID* pData,
);

Function parameter description:

Board: Desired board- / interface number
pSdb: Pointer to the data structure of type T_PROFI_SERVICE_DESCR
pData: Pointer to service specific parameters and data

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (0) Function executed correctly
- E_IF_FATAL_ERROR (7) Unrecoverable error on PROFIBUS controller
- E_IF_NO_CNTRL_RES (10) Controller does not respond (CMI_TIMEOUT)
- E_IF_INVALID_LAYER (12) Invalid layer
- E_IF_INVALID_SERVICE (13) Invalid service identifier
- E_IF_INVALID_PRIMITIVE (14) Invalid service primitive
- E_IF_INVALID_DATA_SIZE (15) Not enough CMI data block memory
- E_IF_RESOURCE_UNAVAILABLE (21) No resource available
- E_IF_NO_PARALLEL_SERVICES (22) No parallel services allowed
- E_IF_SERVICE_CONSTR_CONFLICT (23) Service temporarily not executable
- E_IF_SERVICE_NOT_SUPPORTED (24) Service not supported in subset

User Interface

User Manual Page: 43

- E_IF_SERVICE_NOT_EXECUTABLE (25) Service not executable
- E_IF_INVALID_PARAMETER (30) Invalid parameter in REQ or RES
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_SOCKET_ERROR (254) OS system TCP socket error
- E_IF_OS_ERROR (255) OS system error

NOTES:

If papi_snd_req_res function fails with E_IF_NO_CTRL_RES, the controller did not respond during
the send time-out value specified in papi_init. You can obtain extended error information with
GetLastError if the function returns E_IF_OS_ERROR.

Example

...

#include "pb_if.h"

...

{

 T_PROFI_SERVICE_DESCR Sdb; // Service description block

 T_FMB_SET_CONFIGURATION_REQ FmbSetConfigurationReq; // Request block

 INT16 Result;

 USIGN8 InvokeId;

 USIGN8 BoardNr; // Board (Interface) number

 // initialize the PROFIBUS API

 ...

 // send a FMB_SET_CONFIGURATION request

 // fill the service description

 sdb.layer = FMB;

 sdb.service = FMB_SET_CONFIGURATION;

 sdb.primitive = REQ;

 sdb.invoke_id = ++invokeId;

 sdb.comm_ref = 0;

 // fill the FMB_SET_CONFIGURATION_REQ structure

 ...

 if (E_OK != (Result = papi_snd_req_res(BoardNr,

 &Sdb,

 (void *) &FmbSetConfigurationReq,

)))

 {

 // Error handling

 ...

 }

 ...

}

PROFIBUS Application Program Interface

Page: 44 PROFIBUS

3.4.3.2 Papi-Rcv-Con-Ind

The papi_rcv_con_ind function is used to receive a service indication or service confirmation from the
PROFIBUS interface when available.

INT16 papi_rcv_con_ind
 (

IN USIGN8 Board,
 IN T_PROFI_SERVICE_DESCR* pSdb,
 IN VOID* pData,
 INOUT USIGN16* pDataLength
);

Function parameter description:

Board: Desired board- / interface number
pSdb: Buffer for service description block
pData: Buffer for service specific data block
pDataLen: On function invocation: maximal size of data block
 On function return: actual size of service specific data block

The function returns CON_IND_RECEIVED to signal that a confirmation or indication is available.

Possible function return values (defined in the header file PB_ERR.H):

- NO_CON_IND_RECEIVED (0) There is no confirmation or indication
- CON_IND_RECEIVED (1) Confirmation or indication is available

- E_IF_FATAL_ERROR (7) Unrecoverable error on PROFIBUS controller
- E_IF_NO_CNTRL_RES (10) Controller does not respond (CMI_TIMEOUT)
- E_IF_INVALID_DATA_SIZE (15) Size of data block provided not sufficient
- E_IF_CMI_ERROR (20) Serious CMI error
- E_IF_RESOURCE_UNAVAILABLE (21) No resource available
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_SOCKET_ERROR (254) OS system TCP socket error
- E_IF_OS_ERROR (255) OS system error

NOTES:

Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

User Interface

User Manual Page: 45

Example

...

#include "pb_if.h"

...

{

 USIGN8 BoardNr ; // Board (Interface) number

 T_PROFI_SERVICE_DESCR Sdb; // Service description

 BYTE Data[255]; // Data buffer

 USIGN16 DataLen;

 INT16 Result;

 // Initialize PROFIBUS API

 ...

 // Receive service indication or service confirmation

 for(;;)

 {

 DataLen = sizeof(Data);

 Result = papi_rcv_con_ind(BoardNr,&Sdb, &Data, &DataLen);

 if (Result == CON_IND_RECEIVED)

 {

 // handle indication or confirmation

 ...

 }

 else

 {

 if (Result == NO_CON_IND_RECEIVED)

 {

 // nothing received

 ...

 }

 else

 {

 //Error handling

 ...

 }

 }

 ...

 }

}

PROFIBUS Application Program Interface

Page: 46 PROFIBUS

3.4.4 Data Interface

In addition to the send/receive interface, the PROFIBUS Application Layer Interface offers a data interface
which consists of data structures shared by host and controller. This data interface allows fast cyclic data
transfer.

The data interface is performed by functions, which provide the data flow from and to the DPRAM area.

3.4.4.1 Papi-Set-Data

Using the papi_set_data function, shared data located in the DPRAM area can be written or modified.

INT16 papi_set_data
 (

IN USIGN8 Board,
 IN USIGN8 DataId,
 IN USIGN16 Offset,
 IN USIGN16 DataSize,
 IN VOID* pData,
);

Function parameter description:

Board: Desired board- / interface number
DataId: Identifier of the specified data structure in the Data Interface
Offset: Offset within the data structure
DataSize: Number of bytes to be written to the DPRAM
pData: Data block to be written

Possible values of data_id (defined in the header file PB_IF.H):

ID_DP_SLAVE_IO_IMAGE 0x80 Identifier of image for slave I/O data (DP)

The structures of the data blocks are described in the service specific parts of the PROFIBUS User Manual.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) Not enough CMI data block memory
- E_IF_CMI_ERROR (20) Serious CMI error
- E_IF_SERVICE_NOT_SUPPORTED (24) Identifier is not supported

User Interface

User Manual Page: 47

- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_INVALID_DP_STATE (242) PROFIBUS interface is not in OPERATE state
- E_IF_SOCKET_ERROR (254) OS system TCP socket error
- E_IF_OS_ERROR (255) OS system error

NOTES:

Writing data to the ID_DP_STATUS_IMAGE is not supported in this version.

Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

Example

...

#include "pb_if.h"

...

{

 USIGN8 BoardNr;

 USIGN16 Offset;

 INT16 Result;

 // Initialize PROFIBUS API

...

 // Prepare and write DP data

 ...

 if (E_OK != (Result = papi_set_data(BoardNr,

 ID_DP_SLAVE_IO_IMAGE,

 Offset,

 sizeof(Data),

 &Data)))

 {

 // Error handling

 ...

 }

}

PROFIBUS Application Program Interface

Page: 48 PROFIBUS

3.4.4.2 Papi-Get-Data

The papi_get_data function is used to read shared data located in the DPRAM area.

INT16 papi_get_data
 (

IN USIGN8 Board,
IN USIGN8 DataId,

 IN USIGN16 Offset,
 INOUT USIGN16* pDataSize,
 OUT VOID* pData
);

Function parameter description:

Board: Desired board- / interface number
DataId: Identifier of the specified data structure in the Data Interface
Offset: Offset within the data structure
pDataSize: On function invocation: maximal size of the data buffer (pData)
 On function return: number of bytes actually read
pData: Pointer to data buffer

Possible values of data_id (defined in the header file PB_IF.H):

ID_DP_SLAVE_IO_IMAGE 0x80 Identifier of image for slave I/O data (DP)
ID_DP_STATUS_IMAGE 0x81 Identifier of image for status data (DP)
ID_EXCEPTION_IMAGE 0xF0 Identifier of image for exception data (IF)
ID_FW_VERS_IMAGE 0xF1 Identifer of image for firmware version (IF)
ID_SERIAL_DEVICE_NUMBER 0xF2 Identifier for image for serial device number (IF)

The structures of the data blocks are described in the service specific parts (IF, DP) of the manual.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) Not enough CMI data block memory
- E_IF_CMI_ERROR (20) Serious CMI error
- E_IF_SERVICE_NOT_SUPPORTED (24) Identifier is not supported
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_INVALID_DP_STATE (242) PROFIBUS interface is not in OPERATE state
- E_IF_SOCKET_ERROR (254) OS system TCP socket error
- E_IF_OS_ERROR (255) OS system error

User Interface

User Manual Page: 49

NOTES:
Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

Example

...

#include "pb_if.h"

...

{

 USIGN8 BoardNr;

 USIGN16 Offset;

 USIGN16 DataSize;

 INT16 Result;

 // Initialize PROFIBUS API

 ...

 // Read DP data

 DataSize = sizeof(Data);

 if (E_OK == (Result = papi_get_data(BoardNr,

 ID_DP_SLAVE_IO_IMAGE,

 Offset,

 &DataSize,

 &Data)))

 {

 // Got data from DP slave

 ...

 }

 else

 {

 // Error handling

 ...

 }

 ...

}

PROFIBUS Application Program Interface

Page: 50 PROFIBUS

3.4.4.3 Papi-Set-Dps-Input-Data

The papi_set_dps_input_data function writes the input data of the DP slave to the DP-Slave input data
device. It always writes the full length of the data.

INT16 papi_set_dps_input_data

(
IN USIGN8 Board,
IN USIGN8* pData,
IN USIGN8 DataLength,
OUT USIGN8* pState
);

Function parameter description:

Board: Desired board- / interface number
pData: Pointer to a USIGN8 variable containing the input data
DataLength: Number of input data to be written (in bytes). If the number does not correspond

with the configured length of the input data, the error message
‘E_IF_INVALID_DATA_SIZE’ is returned.

pState: Pointer to the current input data status with:
- DPS_INPUT_STATE_FREEZE_ENABLED

The slave has enabled the function for freezing the inputs.
- DPS_INPUT_STATE_FREEZE_COMMAND

A corresponding Global_Control command was received. Since the last
time the function profi_set_dps_input_data was called the input data have
been taken over as the data to be transmitted from the slave to the
master.A corresponding Global_Control command for picking up the input
data was received from the master. After the execution of this function the
bit is reset automatically.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) Too much user data
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_SOCKET_ERROR (254) OS system TCP socket error
- E_IF_OS_ERROR (255) OS system error

NOTES:
Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

User Interface

User Manual Page: 51

Example

...

#include "pb_if.h"

...

{

 USIGN8 BoardNr; // Board (Interface) number

 USIGN8 DpsInputDataLength; // Length of DP-Slave input data

 USIGN8 DpsInputDataState; // DP-Slave input data state

 INT16 Result; // Return code

 // Initialize PROFIBUS API

 ...

 // Write input data and read recent input data state

 DpsInputDataLength = sizeof(DpsInputData);

 if (E_OK == (Result = papi_set_dps_input_data(BoardNr,

 &DpsInputData,

 DpsInputDataLength,

 &DpsInputDataState)))

 {

 // Got recent input data state

 ...

 }

 else

 {

 // Error handling

 ...

 }

 ...

}

PROFIBUS Application Program Interface

Page: 52 PROFIBUS

3.4.4.4 Papi-Get-Dps-Input-Data

The papi_get_dps_input_data function reads the currently set inputs and the associated status of the DP
slave from the DP-Slave input data device.

INT16 papi_get_dps_input_data

(
IN USIGN8 Board,
OUT USIGN8* pData,
INOUT USIGN8* pDataLength,
OUT USIGN8* pState
);

Function parameter description:

Board: Desired board- / interface number
pData: Pointer to a USIGN8 variable array to read the inputs of the slave.
pDataLength: (IN) Pointer to a USIGN8 variable indicating the buffer size in bytes

(OUT) Number of input data read
pState: Pointer to the current input data status with:
 - DPS_INPUT_STATE_FREEZE_ENABLED
 The slave has enabled the function for freezing the inputs.

- DPS_INPUT_STATE_FREEZE_COMMAND
Since the last 'papi_set_dps_input_data' a corresponding Global_Control
command has been received. The status is read-only. The bit will only be
reset with the function papi_set_dps_input_data.

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) User buffer to small
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_SOCKET_ERROR (254) OS system TCP socket error
- E_IF_OS_ERROR (255) OS system error

NOTES:
Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

User Interface

User Manual Page: 53

Example

...

#include "pb_if.h"

...

{

 USIGN8 BoardNr; // Board (Interface) number

 USIGN8 DpsInputDataBufferLength; // Length of DP-Slave input data buffer

 USIGN8 DpsInputDataState; // DP-Slave input data state

 INT16 Result; // Return code

 // Initialize PROFIBUS API

 ...

 // Read input data and recent input data state

 DpsInputDataBufferLength = sizeof(DpsInputDataBuffer);

 if (E_OK == (Result = papi_get_dps_input_data(BoardNr,

 &DpsInputDataBuffer,

 &DpsInputDataBufferLength,

 &DpsInputDataState)))

 {

 // Input data and recent input data state

 ...

 }

 else

 {

 // Error handling

 ...

 }

 ...

}

PROFIBUS Application Program Interface

Page: 54 PROFIBUS

3.4.4.5 Papi-Get-Dps-Output-Data

The papi_get_dps_output_data function reads the current outputs of the DP slave from the DP-Slave
output data device.

INT16 papi_get_dps_output_data
(
IN USIGN8 Board,
OUT USIGN8* pData,
INOUT USIGN8* pDataLength,
OUT USIGN8* pState
);

Function parameter description:

Board: Desired board- / interface number
pData: Pointer to a USIGN8 variable array to read the outputs of the slave.
pDataLength: (IN) Pointer to a USIGN8 variable indicating the buffer size in bytes
 (OUT) Number of output data read
pState: Pointer to the current output data status with:
 - DPS_OUTPUT_STATE_SYNC_ENABLED
 The function for freezing the outputs has been enabled.

- DPS_OUTPUT_STATE_SYNC_COMMAND
A corresponding Global_Control command was received. Since the last
time the function papi_get_dps_output_data was called, a Sync command
has been received upon which received upon which new output data have
been made ready. The bit is cleared automatically after access.

- DPS_OUTPUT_STATE_CLEAR_DATA
The outputs are in failsafe state. A corresponding command was received
from the master.

- DPS_OUTPUT_STATE_VALID_DATA
No transmission errors have occurred during data transmission from the
master and user data are exchanged (no timeout or watchdog error).

- DPS_OUTPUT_STATE_NEW_DATA
New output data were received from the master. Since the last access via
papi_get_dps_output_data function new data have been delivered
(independent of the Sync command). With this bit you can prevent reusing
old data. The bit is cleared after access.

- DPS_OUTPUT_STATE_GLOBAL_CONTROL
Since the last time the output data were read, a Global_Control command
has been received. The bit is cleared as soon as the output data have been
read.

User Interface

User Manual Page: 55

Possible function return values(defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_INVALID_DATA_SIZE (15) User buffer to small
- E_IF_PAPI_NOT_INITIALIZED (33) API not initialized
- E_IF_SOCKET_ERROR (254) OS system TCP socket error
- E_IF_OS_ERROR (255) OS system error

NOTES:
Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

Example

...

#include "pb_if.h"

...

{

 USIGN8 BoardNr; // Board (Interface) number

 USIGN8 DpsOutputDataBufferLength; // Length of DP-Slave output data buffer

 USIGN8 DpsOutputDataState; // DP-Slave output data state

 INT16 Result; // Return code

 // Initialize PROFIBUS API

 ...

 // Read output data and current output data state

 DpsOutputDataBufferLength = sizeof(DpsOutputDataBuffer);

 if (E_OK == (Result = papi_get_dps_output_data(BoardNr,

 &DpsOutputDataBuffer,

 &DpsOutputDataBufferLength,

 &DpsoutputDataState)))

 {

 // Output data and current output data state

 ...

 }

 else

 {

 // Error handling

 ...

 }

 ...

}

PROFIBUS Application Program Interface

Page: 56 PROFIBUS

3.4.5 Additional Interface Functions

4.4.5.1 Papi-Get-Versions

The papi_get_versions function reads the version string of the PAPI dynamic link library and of the
firmware on the PROFIBUS hardware.

INT16 papi_get_versions

(
IN USIGN8 Board,
OUT char* pPapiVersion,
OUT char* pFirmwareVersion,
);

Function parameter description:

Board: Desired board- / interface number
pPapiVersion: Pointer to a buffer for the version string of the PAPI DLL
pFirmwareVersion: Pointer to a buffer for the version string of the firmware on the PROFIBUS hardware

Possible function return values (defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_NO_CNTRL_RES (10) Cannot open board device
- E_IF_SOCKET_ERROR (254) OS system TCP socket error
- E_IF_OS_ERROR (255) OS system error

NOTES:

Both buffers for the version strings must have at least the size of VERSION_STRING_LENGTH.
The PROFIBUS API does not have to be initialized to get to get the version strings.
Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

Example

...

#include "pb_if.h"

...

{

 USIGN8 BoardNr; // Board (Interface) number

 char PapiVersion[VERSION_STRING_LENGTH], FirmwareVersion[VERSION_STRING_LENGTH];

 INT16 Result;

 if (E_OK == (Result = papi_get_versions(BoardNr,PapiVersion,FirmwareVersion)))

 {

 // version strings

 }

}

User Interface

User Manual Page: 57

3.4.5.2 Papi-Get-Serial-Device-Number

The papi_get_serial_device_number function reads the serial device number of the PROFIBUS
hardware.

INT16 papi_get_serial_device_number
(
IN USIGN8 Board,
OUT USIGN32* pSerialDeviceNumber
);

Function parameter description:

Board: Desired board- / interface number
pSerialDeviceNumber: Pointer to the variable for serial device number

Possible function return values (defined in the header file PB_ERR.H):

- E_OK (00) Function executed correctly
- E_IF_NO_CNTRL_RES (10) Cannot open board device
- E_IF_SOCKET_ERROR (254) OS system TCP socket error
- E_IF_OS_ERROR (255) OS system error

NOTES:

The PROFIBUS API does not have to be initialized to get to get the serial device number.
Extended error information can be obtained with GetLastError if the function returns
E_IF_OS_ERROR.

Example

...

#include "pb_if.h"

...

{

 USIGN8 BoardNr;

 USIGN32 SerialDeviceNumber;

 INT16 Result;

 if (E_OK == (Result = papi_get_serial_device_number(BoardNr,&SerialDeviceNumber)))

 {

 // Serial device number

 }

}

PROFIBUS Application Program Interface

Page: 58 PROFIBUS

4.4.5.3 Papi-Get-Last-Error

The papi_get_last_error function is used to return an additional error code for the interface errors.

INT16 papi_get_last_error
 (
 VOID
);

Possible function return values (defined in the header file PB_ERR.H):

 0x00 No additional error code
> 0x00 Additional error code

User Interface

User Manual Page: 59

3.4.5 INTERFACE RETURN VALUES

This chapter gives an overview of the user interface return values. All possible return values are described
in the header files PB_IF.H and PB_ERR.H.

Overview of User Interface error codes and return values

Identifier Value Description

- E_OK 0 No error occured

- NO_CON_IND_RECEIVED 0 No confirmation or indication available

- CON_IND_RECEIVED 1 Confirmation or indication ws received

- E_IF_FATAL_ERROR 7 Unrecoverable error on board 1)

- E_IF_INIT_INVALID_PARAMETER 8 Invalid initialization parameter

- E_IF_NO_CNTRL_RES 10 Controller does not respond

- E_IF_INVALID_CNTRL_TYPE_VERSION 11 Invalid controller type or invalid firmware version

- E_IF_INVALID_LAYER 12 Invalid layer

- E_IF_INVALID_SERVICE 13 Invalid service identifier

- E_IF_INVALID_PRIMITIVE 14 Invalid service primitive

- E_IF_INVALID_DATA_SIZE 15 Not enough CMI data block memory

- E_IF_INVALID_CMI_CALL 19 Invalid CMI call

- E_IF_CMI_ERROR 20 Error occured in CMI

- E_IF_RESOURCE_UNAVAILABLE 21 No resource available

- E_IF_NO_PARALLEL_SERVICES 22 No parallel services allowed

- E_IF_SERVICE_CONSTR_CONFLICT 23 Service temporarily not executable

- E_IF_SERVICE_NOT_SUPPORTED 24 Service not supported

- E_IF_SERVICE_NOT_EXECUTABLE 25 Service not executable

- E_IF_INVALID_ACCESS 26 Invalid access to protocol software

- E_IF_NO_CNTRL_PRESENT 28 No controller present

- E_IF_INVALID_PARAMETER 30 Invalid parameter in REQ or RES

- E_IF_INIT_FAILED 31 Init. API or Controller failed

- E_IF_EXIT_FAILED 32 Exit API or Controller failed

- E_IF_PAPI_NOT_INITIALIZED 33 API not initialized

- E_IF_NO_DEVICE_CONNECTION 34 no PROFIBUS device connection (TCP/IP)

- E_IF_SLAVE_DIAG_DATA 240 no data available

- E_IF_SLAVE_ERROR 241 no data exchange

- E_IF_INVALID_DP_STATE 242 DP is not in state clear/operate

- E_IF_READING_REGISTRY 243 Error reading registry

- E_IF_SOCKET_ERROR 254 OS system TCP Socket error

- E_IF_OS_ERROR 255 OS system (WIN,DOS) error

PROFIBUS Application Program Interface

Page: 60 PROFIBUS

1) NOTE: If the interface error E_IF_FATAL_ERROR is indicated, the user can read additional
 information about this error via the service interface function papi_rcv_con_ind or data
 interface function papi_get_data:

 Read additional error information via papi_rcv_con_ind:

 Service-Description-Block for Indication:

 USIGN16 comm_ref 0

 USIGN8 layer FMB_USR

 USIGN8 service FMB_EXCEPTION

 USIGN8 primitive IND

 INT8 invoke_id 0

 INT16 result POS

 Data block for Indication:

 Data structure T_EXCEPTION

 USIGN8 task_id Task in wich the fatal system error is occurred

 USIGN8 par1 Exception parameter 1

 USIGN16 par2 Exception parameter 2

 USIGN16 par3 Exception parameter 3

 Read additional error information via papi_get_data:

 papi_get_data (Board, /* board number */
 ID_EXCEPTION_IMAGE, /* Identifier of the exception description */
 0, /* Offset in the exception description */
 (USIGN16 FAR*) &data_len, /* Size of the exception description */
 (T_EXCEPTION FAR*) &exception /* Pointer to the exception description */
);

 T_EXCEPTION exception; /* Defined in the header file PB_ERR.H */
 USIGN16 data_descr_len = sizeof(T_EXCEPTION);

User Interface

User Manual Page: 61

3.5 PROFIBUS APPLICATION PROGRAM INTERFACE (.NET-INTERFACE)

The PROFIBUS Application Program Interface (PAPI) provides two mechanisms for data exchange
between application and protocol software and host and controller:

- a send/receive interface using request blocks for service-oriented data exchange and

- a data interface, which is used for fast cycle data exchange.

The PROFIBUS API class CPAPI contains the following public member functions:

Init Initialize interface

End Shut down interface

SendServiceRequestResponse Send a service frame

ReceiveConfirmationIndication Receive a service frame

SetData Write data

GetData Read data

SetDpsInputData Write DP-Slave input data

GetDpsInputData Read DP-Slave input data

GetDpsOutputData Read DP-Slave output data

GetVersions Read version strings

GetSerialDeviceNumber Read serial device number

ImportBinaryDpConfigurationFile Import DP busparameter set and DP
slaveparameter sets from binary
configuration file.

PROFIBUS Application Program Interface

Page: 62 PROFIBUS

3.5.1 Data structures

The PROFIBUS Application Program Interface provides access to the service-oriented devices. A
PROFIBUS frame consists of a service-independent description and a service-specific service-specific data
block with parameters and data.

The class C_PROFI_SERVICE_DESCR describes the service to be performed by the protocol software.

Description of the service description block:

class C_PROFI_SERVICE_DESCR
 (
 UInt16 commRef,
 byte layer,
 byte service,
 byte primitive,
 char invokeId,
 short result
)

The service description block's elements are as follows:

- commRef : Communication reference ("logical channel")
- layer: Layer instance the service invocation is directed to (Fms, Fmb, Fm7, Dp, Dps, Fdlif,

FmsUsr, FmbUsr, Fm7Usr, DpUsr, DpsUsr, FdlifUsr)

- service: : Service to be performed in the instance specified in the layer.

- primitive : Service primitives (request, indication, response, confirmation)

- invokeId : ID to distinguish parallel service invocations

- result : Positive or negative result

The data block contains the service-specific data. Typically, for communication services these are data as
described in the PROFIBUS IEC 61158-5 AND IEC 61158-6

Construction of the service-specific data blocks is described in the manuals FMS, FMB, FM7, FDLIF, DP
and DP/V1.

User Interface

User Manual Page: 63

3.5.2 Initialization and Shut down

The initialization function Init is used to initialize the PROFIBUS API and open the low-level devices of the
PROFIBUS hardware driver.

3.5.2.1 CPAPI-Init

The Init function is used to initialize the PROFIBUS API and to open the low-level devices of the desired
interface (board) of the PROFIBUS hardware driver. The function has to be called before any other
function of PROFIBUS-API is called

virtual void Init

(
IN Byte board,
IN UInt32 readTimeout,
IN UInt32 writeTimeout
);

Function parameter description:

board: Desired board- / interface number
readTimeout: ReceiveTimeout in msec (WAIT_FOR_EVER for infinity wait).
writeTimeout: Send Timeout in msec (WAIT_FOR_EVER for infinity wait).

Possible exception values of class object CPapiException:

- NoControllerResponse (0x0A) Controller does not respond (CMI_TIMEOUT)
- CmiError (0x14) Can not set timeout values
- ServcieNotExecutable (0x19) Application has called Init before
- ReadingRegiatry (0xF3) Error reading registry
- SocketError (0xFE) Can not open TCP socket
- OsError (0xFF) Can not driver devices

PROFIBUS Application Program Interface

Page: 64 PROFIBUS

Example

C#

...

using PapiWrapper.Common;

...

static CPapi _papi;

...

{

 Byte boardNumber;

 UInt32 readTimeout, writeTimeout;

 ...

 try

 {

 _papi.Init(boardNumber, readTimeout, readTimeout);

 }

 catch (CPapiException papiExc)

 {

 ...

 }

 ...

}

User Interface

User Manual Page: 65

3.5.2.2 CPAPI-End

The End function is used to shut down the PROFIBUS API. This means that the low-level devices will be
closed.

virtual void End

(
IN Byte board
);

Function parameter description:

board: Desired board- / interface number

Example

C#

...

using PapiWrapper.Common;

...

static CPapi _papi;

...

{

 Byte boardNumber;

 // Initialize PROFIBUS API

 ...

 ...

 // Shut down PROFIBUS API

 try

 {

 _papi.End(boardNumber);

 }

 catch (CPapiException papiExc)

 {

 ...

 }

 ...

}

PROFIBUS Application Program Interface

Page: 66 PROFIBUS

3.5.3 Send / Receive Interface

The send/receive interface provides by means for both control flow and data flow between host and
controller.

Data flow between the application and the communication is described by a service invariant and a large
number of service specific data structures.

Control flow is directed by means of two functions, which control the data flow in both directions.

The two cases described above are covered by two interface functions in the Softing PROFIBUS
implementations.

The SendServiceRequestResponse function is used for sending requests and responses. The
ReceiveServiceConfirmationIndication function is used to receive confirmations and indications.

3.5.3.1 CPAPI-SendServiceRequestResponse

The SendserviceRequestResponse function is used for sending requests and responses to PROFIBUS
interface.

virtual void SendServiceRequestResponse

(
IN Byte board,
IN C_PROFI_SERVICE_DESCR^ profiServiceDescr,
IN Object^ sendData,
);

Function parameter description:

board: Desired board- / interface number
profiServiceDescr: Reference to the data structure of type T_PROFI_SERVICE_DESCR
sendData: Reference to service specific parameters and data

Possible exception values of class object CPapiException:

- FatalError (7) Unrecoverable error on PROFIBUS controller
- NoControllerResponse (10) Controller does not respond (CMI_TIMEOUT)
- InvalidLayer (12) Invalid layer
- InvalidService (13) Invalid service identifier
- InvalidPrimitive (14) Invalid service primitive
- InvalideDataSize (15) Not enough CMI data block memory
- ResourceUnavailable (21) No resource available
- NoParallelServices (22) No parallel services allowed
- ServiceConstraintConflict (23) Service temporarily not executable

User Interface

User Manual Page: 67

- ServiceNotSupported (24) Service not supported in subset
- ServiceNotExecutable (25) Service not executable
- InvalidParameter (30) Invalid parameter in REQ or RES
- PapiNotInitilized (33) API not initialized
- SocketError (254) OS system TCP socket error
- OsError (255) OS system error

NOTES:

If ‘SendserviceRequestResponse’ function fails with the exception ‘NoCntrlRes’, the controller did
not respond during the send time-out value specified in Init function. You can obtain extended error
information with GetLastError if the function returns ‘OsError’.

Example

C#

...

using PapiWrapper.Common;

...

static CPapi _papi = new CPAPI();

...

{

 // send a FMB_SET_CONFIGURATION request

 Byte boardNumber; // Board (Interface) number

 C_PROFI_SERVICE_DESCR profiSdb = new C_PROFI_SERVICE_DESCR();

 C_FMB_SET_CONFIGURATION_REQ setFmbConfigReq = new C_FMB_SET_CONFIGURATION_REQ();

 // prepare the service description block

 profiSdb.Layer = (byte) LayerIdentifier.Fmb;

 profiSdb.Service = (byte) FMBService.SetConfiguration;

 profiSdb.Primitive = (byte) ServicePrimitive.Req;

 // fill the FMB_SET_CONFIGURATION_REQ structure

 setFmbConfigReq.DpActive = (byte)Constants.PbTrue; // dp_active

 ...

 try

 {

 _papi.SendServiceRequestResponse(boardNumber, profiSdb, setFmbConfigReq);

 }

 catch (CPapiException papiExc)

 {

 ...

 }

}

PROFIBUS Application Program Interface

Page: 68 PROFIBUS

3.5.3.2 CPAPI-ReceiveServiceConfirmationIndication

The ReceiveServiceConfirmationIndication function is used to receive a service indication or service
confirmation from the PROFIBUS interface when available.

virtual ServiceConfirmationIndication ReceiveServiceConfirmationIndication
 (

IN Byte board,
);

Function parameter description:

board: Desired board- / interface number

Possible return values of class object ServiceConfirmationIndication:

The function returns with a reference to ServiceConfirmationIndication object signal that a confirmation or
indication is available.

- IsIndConf (0) There is no confirmation or indication
 (1) Confirmation or indication is available
- ServiceDescriptor Service description block
- ServiceData service specific data block

Possible exception values of class object CPapiException:

- FatalError (7) Unrecoverable error on PROFIBUS controller
- NoControllerResponse (10) Controller does not respond (CMI_TIMEOUT)
- InvalidDataSize (15) Size of data block provided not sufficient
- CmiError (20) Serious CMI error
- ResourceUnavailable (21) No resource available
- PapiNotInitialized (33) API not initialized
- SocketError (254) OS system TCP socket error
- OsError (255) OS system error

NOTES:

Extended error information can be obtained with GetLastError if the function returns ‘OsError’.

User Interface

User Manual Page: 69

Example

C#

...

using PapiWrapper.Common

...

static CPAPI _papi new CPAPI();

...

{

 byte boardNumber; // Board (Interface) number

 ...

 // Receive service indication or service confirmation

 try

 {

 ServiceConfirmationIndication serviceConfInd =

 _papi.ReceiveServiceConfirmIndication(boardNumber);

 if (serviceConfInd!= null)

 {

 if (serviceConfInd.IsIndConf) // ConIndReceived

 {

 // confirmation / indication received

 ...

 }

 else

 {

 // no confirmation and no indication received

 ...

 }

 }

 }

 catch (CPapiException papiExc)

 {

 ...

 }

...

}

PROFIBUS Application Program Interface

Page: 70 PROFIBUS

3.5.4 Data Interface

In addition to the send/receive interface, the PROFIBUS Application Layer Interface offers a data interface
which consists of data structures shared by host and controller. This data interface allows fast cyclic data
transfer.

The data interface is performed by functions, which provide the data flow from and to the DPRAM area.

3.5.4.1 CPAPI-SetData

Using the SetData function, shared data located in the DPRAM area can be written or modified.

virtual void SetData
 (

IN Byte board,
IN Byte dataId

 IN UInt16 offset,
 IN UInt16 dataLength,
 IN array<byte>^ data
);

Function parameter description:

board: Desired board- / interface number
dataId: Identifier of the specified data structure in the Data Interface
offset: Offset within the data structure
dataLengh: Number of bytes to be written to the DPRAM
data: Reference to data block to be written

Possible values of dataId (class DataImage):

IdDPSlaveIo 0x80 Identifier of image for slave I/O data (DP)

The structures of the data blocks are described in the service specific parts of the PROFIBUS User Manual.

Possible exception values of class object CPapiException:

- InvalidDataSize (15) Not enough CMI data block memory
- CmiError (20) Serious CMI error
- ServiceNotSupported (24) Identifier is not supported

User Interface

User Manual Page: 71

- PapiNotInitialized (33) API not initialized
- InvalidDpState (242) PROFIBUS interface is not in OPERATE state
- SocketError (254) OS system TCP socket error
- OsError (255) OS system error

NOTES:

Writing data to the “DpStatus” image is not supported in this version.

Extended error information can be obtained with GetLastError if the function returns “OsError”.

Example

C#

...

using PapiWrapper.Common

...

static CPAPI _papi new CPAPI();

...

{

 byte boardNumber;

 ushort offset = 0;

 ushort dataSize = 6;

 byte[] data = new byte[6] { 0x2F, 0x2D, 0x5C, 0x7C, 0x37, 0x54};

 ...

 // Write DP IO data

 try

 {

 _papi.Setdata(boardNumber,

 (byte) DataImage.IdDpSlaveIo,

 offset,

 dataSize,

 data);

 ...

 }

 catch CPapiException papiExc)

 {

 ...

 }

}

PROFIBUS Application Program Interface

Page: 72 PROFIBUS

3.5.4.2 CPAPI-GetData

The GetData function is used to read shared data located in the DPRAM area.

virtual void GetData
 (

IN Byte board,
IN Byte dataId,

 IN UInt16 offset,
 INOUT Byte% dataLength,

OUT array<Byte>^ data,
);

Function parameter description:

board: Desired board- / interface number
dataId: Identifier of the specified data structure in the Data Interface
offset: Offset within the data structure
dataLength: On function invocation: maximal size of the data buffer (pData)
 On function return: number of bytes actually read
data: Reference to data buffer

Possible values of dataId (class DataImage,):

IdDpSlaveIo 0x80 Identifier of image for slave I/O data (DP)
IdDpStatusI 0x81 Identifier of image for status data (DP)
IdException 0xF0 Identifier of image for exception data (IF)
IdFirmwareVersion 0xF1 Identifer of image for firmware version (IF)
IdSerialDeviceNumber 0xF2 Identifier for image for serial device number (IF)

The structures of the data blocks are described in the service specific parts (IF, DP) of the manual.

Possible exception values of class object CPapiException:

- InvalidDataSize (15) Not enough CMI data block memory
- CmiError (20) Serious CMI error
- ServiceNotSupported (24) Identifier is not supported
- PapiNotInitialized (33) API not initialized
- InvalidDpState (242) PROFIBUS interface is not in OPERATE state
- SocketError (254) OS system TCP socket error
- OsError (255) OS system error

NOTES:
Extended error information can be obtained with GetLastError if the function returns “OsError”.

User Interface

User Manual Page: 73

Example

C#

...

using PapiWrapper.Common

...

static CPAPI _papi new CPAPI();

...

{

 byte boardNumber;

 ushort offset = 0;

 ushort dataSize = 244;

 byte[] data = new byte[244];

 ...

 // Read DP IO data

 try

 {

 _papi.Getdata(boardNumber,

 (byte) DataImage.IdDpSlaveIo,

 offset,

 ref dataSize,

 data);

 ...

 }

 catch CPapiException papiExc)

 {

 ...

 }

}

PROFIBUS Application Program Interface

Page: 74 PROFIBUS

3.5.4.3 CPAPI-SetDpsInputData

The SetDpsInputData function writes the input data of the DP slave to the DP-Slave input data device. It
always writes the full length of the data.

Virtual void SetDpsInputData

(
IN Byte board,
IN array<Byte>^ inputData,
IN Byte dataLength,
OUT Byte% state
);

Function parameter description:

board: Desired board- / interface number
inputData: Reference to a byte array containing the input data
dataLength: Number of input data to be written (in bytes). If the number does not correspond

with the configured length of the input data, the exception ‘InvalidDataSize’ is
returned.

state: Reference to the current input data status with:
- DPSInputState.FreezeEnabled

The slave has enabled the function for freezing the inputs.
- DPSInputState.FreezeCommand

A corresponding Global_Control command was received. Since the last
time the function SetDpsInputData() was called the input data have been
taken over as the data to be transmitted from the slave to the master.A
corresponding Global_Control command for picking up the input data was
received from the master. After the execution of this function the bit is reset
automatically.

Possible exception values of class object CPapiException:

- InvalidDataSize (15) Too much user data
- PapiNotInitialized (33) API not initialized
- SocketError (254) OS system TCP socket error
- OsError (255) OS system error

NOTES:
Extended error information can be obtained with GetLastError if the function returns “OsError”.

User Interface

User Manual Page: 75

Example

C#

...

using PapiWrapper.Common

...

static CPAPI _papi new CPAPI();

...

{

 byte boardNumber;

 byte state;

 ushort dataSize = 6;

 byte[] data = new byte[6] { 0x2F, 0x2D, 0x5C, 0x7C, 0x37, 0x54};

 ...

 // Write DPS inputO data

 try

 {

 _papi.SetDpsInputData(boardNumber,

 data,

 dataSize,

 ref state);

 ...

 }

 catch CPapiException papiExc)

 {

 ...

 }

}

PROFIBUS Application Program Interface

Page: 76 PROFIBUS

3.5.4.4 CPAPI-GetDpsInputData

The GetDpsInputData function reads the currently set inputs and the associated status of the DP slave
from the DP-Slave input data device.

Virtual void GetDpsInputData

(
IN Byte board,
OUT array<Byte>^ inputData,
INOUT Byte% dataLength,
OUT Byte% state
);

Function parameter description:

board: Desired board- / interface number
inputData: Reference to a byte array to read the inputs of the slave.
dataLength: (IN) Referencer to a byte variable indicating the buffer size in bytes

(OUT) Number of input data read
state: Reference to the current input data status with:
 - DPSInputState.FreezeEnabled
 The slave has enabled the function for freezing the inputs.

- DPSInputState.FreezeCommand
Since the last 'SetDpsInputData()' a corresponding Global_Control
command has been received. The status is read-only. The bit will only be
reset with the function SetDpsInputData().

Possible exception values of class object CPapiException:

- InvalidDataSize (15) User buffer to small
- PapiNotInitialized (33) API not initialized
- SocketError (254) OS system TCP socket error
- OsError (255) OS system error

NOTES:
Extended error information can be obtained with GetLastError if the function returns “OsError”.

User Interface

User Manual Page: 77

Example

C#

...

using PapiWrapper.Common

...

static CPAPI _papi new CPAPI();

...

{

 byte boardNumber;

 byte state;

 ushort dataSize = 244;

 byte[] data = new byte[244];

 ...

 // Read DPS input data

 try

 {

 _papi.getDpsInputData(boardNumber,

 data,

 ref dataSize,

 ref state);

 ...

 }

 catch CPapiException papiExc)

 {

 ...

 }

}

PROFIBUS Application Program Interface

Page: 78 PROFIBUS

3.5.4.5 CPAPI-GetDpsOutputData

The GetDpsOutputData function reads the current outputs of the DP slave from the DP-Slave output data
device.

virtual void GetDpsOutputData
(
IN Byte board,
OUT array<Byte>^ outputData,
INOUT Byte% dataLength,
OUT Byte% state
);

Function parameter description:

board: Desired board- / interface number
outputData: Reference to a byte array to read the outputs of the slave.
dataLength: (IN) Reference to a byte variable indicating the buffer size in bytes
 (OUT) Number of output data read
state: Reference to the current output data status with:
 - DPSOutputState.SyncEnabled
 The function for freezing the outputs has been enabled.

- DPSOutputState.SyncCommand
A corresponding Global_Control command was received. Since the last
time the function GetDpsOutputData() was called, a Sync command has
been received upon which received upon which new output data have been
made ready. The bit is cleared automatically after access.

- DPSOutputState.ClearData
The outputs are in failsafe state. A corresponding command was received
from the master.

- DPSOutputState.ValidData
No transmission errors have occurred during data transmission from the
master and user data are exchanged (no timeout or watchdog error).

- DPSOutputState.NewData
New output data were received from the master. Since the last access via
GetDpsOutputData() function new data have been delivered (independent
of the Sync command). With this bit you can prevent reusing old data. The
bit is cleared after access.

- DPSOutputState.GlobalControl
Since the last time the output data were read, a Global_Control command
has been received. The bit is cleared as soon as the output data have been
read.

User Interface

User Manual Page: 79

Possible exception values of class object CPapiException:

- InvalidDataSize (15) User buffer to small
- PapiNotInitialized (33) API not initialized
- SocketError (254) OS system TCP socket error
- OsError (255) OS system error

NOTES:
Extended error information can be obtained with GetLastError if the function returns “OsError”.

Example

C#

...

using PapiWrapper.Common

...

static CPAPI _papi new CPAPI();

...

{

 byte boardNumber;

 byte state;

 ushort dataSize = 244;

 byte[] data = new byte[244];

 ...

 // Read DPS output data

 try

 {

 _papi.getDpsOutputData(boardNumber,

 data,

 ref dataSize,

 ref state);

 ...

 }

 catch CPapiException papiExc)

 {

 ...

 }

}

PROFIBUS Application Program Interface

Page: 80 PROFIBUS

3.5.5 Additional Interface Functions

3.5.5.1 CPAPI-GetVersions

The GetVersions function reads the version string of the PAPI dynamic link library and of the firmware on
the PROFIBUS hardware.

virtual void GetVersions

(
IN Board board,
OUT String^% papiVersion,
OUT String^% firmwareVersion,
);

Function parameter description:

Board: Desired board- / interface number
papiVersion: Reference to a buffer for the version string of the PAPI DLL
firmwareVersion: Reference to a buffer for the version string of the firmware on the PROFIBUS

hardware

Possible exception values of class object CPapiException:

- NoControllerResponse (10) Cannot open board device
- SocketError (254) OS system TCP socket error
- OsError (255) OS system error

NOTES:

Extended error information can be obtained with GetLastError if the function returns “OsError”

User Interface

User Manual Page: 81

Example

C#

...

using PapiWrapper.Common

...

static CPAPI _new CPAPI();

...

{

 byte boardNumber;

 string papiVersion = string.Empty;

 string firmwareVersion = string.Empty;

 try

 {

 _papi.GetVersions(boardNumber, ref papiVersion, ref firmwareVersion);

 ...

 }

 catch (CPapiException papiExc)

 {

 ...

 }

}

PROFIBUS Application Program Interface

Page: 82 PROFIBUS

3.5.5.2 CPAPI-GetSerialDeviceNumber

The GetSerialDeviceNumber function reads the serial device number of the PROFIBUS hardware.

virtual UInt32 GetSerialDeviceNumber
(
IN Byte board
);

Function parameter description:

board: Desired board- / interface number

Possible function return values :

serialDeviceNumber: serial device number

Possible exception values of class object CPapiException:

- NoControllerResponse (10)
- SocketError (254) OS system TCP socket error
- OsError (255) OS system error

NOTES:

The PROFIBUS API does not have to be initialized to get to get the serial device number.
Extended error information can be obtained with GetLastError if the function returns “OsError”.

Example

C#

...

using PapiWrapper.Common

...

static CPAPI _new CPAPI();

...

{

 byte boardNumber;

 try

 {

 uint serialDeviceNumber = _papi.GetSerialDeviceNumber(boardNumber);

 ...

 }

 catch (CPapiException papiExc)

 {

 ...

 }

}

User Interface

User Manual Page: 83

3.5.5.3 CPAPI-ImportBinaryDpConfigurationFile

The ImportBinaryDpConfigurationFile function imports the the DP-Master- and DP-Slave parameter
sets from a Softing DP-Configurator created configuration file.

virtual void ImportBinaryDpConfigurationFile
(
IN String^ binConfigFile,
OUT C_DP_BUS_PARA_SET^% dpBusParameter,
OUT Dictionary<Byte, C_DP_SLAVE_PARA_SET^>^ dpSlaveParameterSets
);

Function parameter description:

binConfigFile: binary configuration file
dpBusParameter: DP busparameter set
dpSlaveParameterSets DP slave parameter sets

Possible exception values of class object CPapiException:

- OsError (255) OS system error

NOTES:

The PROFIBUS API does not have to be initialized to get to get the serial device number.
Extended error information can be obtained with GetLastError if the function returns “OsError”.

PROFIBUS Application Program Interface

Page: 84 PROFIBUS

3.5.6 CPAPI User Interface Exception Values

This chapter gives an overview of the user interface exception values.

Overview of User Interface Exception values

Identifier Value Description

- FatalError 7 Unrecoverable error on board 1)

- InitInvalidParameter 8 Invalid initialization parameter

- NoControllerResponse 10 Controller does not respond

- InvalidCntrollertTypeVersion 11 Invalid controller type or invalid firmware version

- InvalidLayer 12 Invalid layer

- InvalidService 13 Invalid service identifier

- InvalidPrimitive 14 Invalid service primitive

- InvalidDataSize 15 Not enough CMI data block memory

- InvalidCmiCall 19 Invalid CMI call

- CmiError 20 Error occured in CMI

- ResourceUnavailable 21 No resource available

- NoParallelServices 22 No parallel services allowed

- ServiceConstraintConflict 23 Service temporarily not executable

- ServiceNotSupported 24 Service not supported

- ServiceNotExectutable 25 Service not executable

- InvalidAccess 26 Invalid access to protocol software

- NoCntrollerPresent 28 No controller present

- InvalidParameter 30 Invalid parameter in REQ or RES

- InitFailed 31 Init. API or Controller failed

- ExitFailed 32 Exit API or Controller failed

- PapiNotInitialized 33 API not initialized

- NoDeviceConnection 34 no PROFIBUS device connection (TCP/IP)

- SlaveDiagData 240 no data available

- SlaveError 241 no data exchange

- InvalidDpState 242 DP is not in state clear/operate

- ReadingRegistry 243 Error reading registry

- SocketError 254 OS system TCP Socket error

- OsError 255 OS system (WIN,DOS) error

User Interface

User Manual Page: 85

1) NOTE: If the interface exception value FatalError is indicated, the user can read additional
information about this exception via the service interface methode
ReceiveServiceConfirmationIndication() .

 Service-Description-Block for Indication:

 UInt16 commRef 0

 Byte layer LayerIdentifier.FmbUsr;

 Byte service FMBService.Exception

 Byte primitive ServicePrimitive.Ind

 Int8 invokeId 0

 Int16 result ServiceResult.Pos

 Data block for Indication:

 Class C_EXCEPTION

 Byte taskId Task in wich the fatal system error is occurred

 Byte par1 Exception parameter 1

 UInt16 par2 Exception parameter 2

 UInt16 par3 Exception parameter 3

